Issue №3-22, 2023

Original article

Transcranial Magnetic Stimulation Application in Children with Severe Traumatic Brain Injury: a Randomized Prospective Study



1,2 ORCID Elza M. Akhmadullina, 2 ORCID Rezeda A. Bodrova, 1,3 ORCID Razilya F. Rakhmaeva

1“Children’s Republican Clinical Hospital of the Ministry of Health of the Republic of Tatarstan”, Kazan, Russia
2Kazan State Medical Academy — a branch of Russian Medical Academy of Continuous Professional Education, Kazan, Russia
3 Kazan State Medical University, Kazan, Russia


ABSTRACT

INTRODUCTION. Today, severe traumatic brain injury (STBI) poses a serious threat to the life and health of affected children, which requires long-term expensive treatment and long-term rehabilitation. Improving the diagnosis, resuscitation and neurosurgical care for children with STBI leads to an increase in the percentage of surviving patients, which necessitates the development and implementation of individual early rehabilitation programs. One of the tasks of early rehabilitation is to reduce the spasticity of the extremities, in connection with which transcranial magnetic stimulation (TMS) is used in our hospital. The experience of using the TCMS method in the first month of STBI in children is given, due to which the dynamics of the restoration of lost functions improves. 

AIM. Evaluation of the effectiveness of the use of the method of transcranial magnetic stimulation in children in the acute period of STBI with inclusion in the program of early medical rehabilitation.
MATERIAL AND METHODS. 40 patients with STBI who were treated at the GAUZ СRCH MH RT, Kazan were taken for curation. The main group was selected by the randomization method, which included 20 (50 %) patients who received the procedure of transcranial magnetic stimulation in the individual program of medical rehabilitation and the control group — 20 (50 %) patients who received only the standard individual program of early rehabilitation. Patients of the main group on the 10th day after receiving a severe traumatic brain injury were initiated to undergo TKMS in addition to the program of individual early rehabilitation.
RESULTS AND DISCUSSION. As a result of the course of therapy with the inclusion of TMS in the rehabilitation measures, an increase in the motor activity of the affected limb was observed, which led to an improvement in the patient’s self-care.
CONCLUSION. The inclusion of transcranial magnetic stimulation in the program of early rehabilitation of children with severe traumatic brain injury creates suitable conditions for the course of compensatory-regenerative processes in the brain due to the depolarization of the membrane of cortical neurons. In this group of patients, there was a clear increase in muscle strength and a decrease in spasticity


KEYWORDS: children, severe traumatic brain injury, early rehabilitation, muscle tone, transcranial magnetic stimulation

Acknowledgments: The study had no sponsorship.

Conflict of interest:: The authors declare no apparent or potential conflicts of interest related to the publication of this article.

For citation:

Akhmadullina E.M., Bodrova R.A., Rakhmaeva R.F. Transcranial Magnetic Stimulation Application in Children with Severe Traumatic Brain Injury: a Randomized Prospective Study. Bulletin of Rehabilitation Medicine. 2023; 22(3): 8-16. https://doi.org/10.38025/2078-1962-2023-22-3-8-16 (In Russ.)



References:

1. Nikbakht A., Soleimanabad S.K., Siahposht-Khachaki A., Farzin D. The effect of Riluzole on neurological outcomes, blood-brain barrier, brain water and neuroinflammation in traumatic brain injury. Brain Disorders. 2022; (8): 1–13. https://doi.org/10.1016/j.dscb.2022.100052
2. Ma X., Niu X., Zhao J., Deng Z. et al. Downregulation of Sepina3n Aggravated Blood–Brain Barrier Disruption after Traumatic Brain Injury by Activating Neutrophil Elastase in Mice. Neuroscience. 2022; (503): 45–57. https://doi.org/10.1016/j.neuroscience.2022.08.023
3. Vaghebin R., Khalili S. M., Mehrdad A. et al. Saphenous vein phlebotomy alleviates neuroinflammatory response and oxidative stress following traumatic brain injury. Interdisciplinary Neurosurgery. 2022; 30(2022): 101626. https://doi.org/10.1016/j.inat.2022.101626
4. Akhadov T.A., Semenova N.A., Valiullina S.A. et al. Magnetic resonance imaging in assessing severe traumatic brain injury and predicting brain recovery in children. Russian Pediatric Journal. 2020; 23(5): 291–298 (In Russ.).
5. Huang B., Tang T., Chen S.-H. et al. Near-infrared-IIb emitting single-atom catalyst for imaging-guided therapy of blood-brain barrier breakdown after traumatic brain injury. Nature Communications. 2023; (14): 197–212. https://doi.org/10.1038/s41467-023-35868-8
6. Saha P., Gupta R., Sen T., Sen N. Histone Deacetylase 4 Downregulation Elicits Post-Traumatic Psychiatric Disorders through Impairment of Neurogenesis. Journal of Neurotrauma. 2019; (36): 3284–3296. https://doi.org/10.1089/neu.2019.6373
7. Galgano M., Toshkezi G., Qiu X. et al. Traumatic Brain Injury: Current Treatment Strategies and Future Endeavors. Cell Transplantation. 2017; 26(7): 1118–1130. https://doi.org/10.1177/0963689717714102
8. Kaur P., Sharma S. Recent Advances in Pathophysiology of Traumatic Brain Injury. Current Neuropharmacology. 2018; 16(8): 1224–1238. https://doi.org/10.2174/1570159X15666170613083606
9. Bodrova R.A., Nefedieva D.L., Akhmadullina E.M., Nekrasova A.M. Medical rehabilitation in children with severe traumatic brain injury. Educational and methodical manual. Kazan: Editorial and Publishing Department of KSMAA. 2021: 68 p. (In Russ.).
10. Ryan J., Pouliot J.J., Hajcak G., Nee D. E. Manipulating Reward Sensitivity Using Reward Circuit–Targeted Transcranial Magnetic Stimulation. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. 2022; 7(8): 833–840. https://doi.org/10.1016/j.bpsc.2022.02.011
11. Borodin M.M., Usoltseva N.I., Gorshkov K.M. et al. Impact of navigated rhythmic transcranial magnetic stimulation on regaining consciousness in patients after severe brain injury. Physical and Rehabilitation Medicine, Medical Rehabilitation. 2020; (1): 20–27. https://doi.org/10.36425/rehab19267 (In Russ.).
12. Sorokina N.D., Pertsov S.S., Selitsky G.V. Neurobiological mechanisms of transcranial magnetic stimulation and its comparative effectiveness in tension headache and migraine. I.P. Pavlov Russian Medical Biological Herald. 2018; 26(3): 417–429. https://doi.org/10.23888/PAVLOVJ2018263417-429 (In Russ.).
13. Lin Y.Y., Chen R.-S., Huang Y.Z. Impact of operator experience on transcranial magnetic stimulation. Clinical Neurophysiology Practice. 2022; 7(2022): 42–48. https://doi.org/10.1016/j.cnp.2022.01.002
14. Tervo A.E., Nieminen J.O., Lioumis P. et al. Closed-loop optimization of transcranial magnetic stimulation with electroencephalography feedback. Brain Stimulation. 2022; 15(2): 523–531. https://doi.org/10.1016/j.brs.2022.01.016
15. Suponeva N.A., Yusupova D.G., Ilyina K.A. et al. Validation of the Modified Ashworth Scale in Russia. Annals of Clinical and Experimental Neurology. 2020; 14(1): 89–96. https://doi.org/10.25692/ACEN.2020.1.10 (In Russ.).
16. Akhmadullina E.M., Khasanova E.M., Bodrova R.A. Physical factors of rehabilitation of patients with severe cranial injury. Journal of New Medical Technologies. 2021; (5): 95–100. https://doi.org/10.24412/2075-4094-2021-5-3-8 (In Russ.).




Creative Commons License
The content is available under the Creative Commons Attribution 4.0 License.

©

Эта статья открытого доступа по лицензии CC BY 4.0. Издательство: ФГБУ «НМИЦ РК» Минздрава России.
This is an open article under the CC BY 4.0 license. Published by the National Medical Research Center for Rehabilitation and Balneology.