Issue №4-22, 2023

ORIGINAL ARTICLE

Transcranial Magnetic and Transcutaneous Spinal Cord Electrical Stimulation a Stroke-Patients Walking Correction: Blinded Clinical Randomised Study



1,2 ORCIDSergey S. Ananyev, 1 ORCID Denis A. Pavlov, 1 ORCID Rafail N. Yakupov,1 ORCIDValentina A. Golodnova, 1 ORCIDMikhail V. Balykin

1 Ulyanovsk State University, Ulyanovsk, Russia
2 Pavlov Institute of Physiology, RAS, Saint Petersburg, Russia


ABSTRACT

INTRODUCTION. The impairment of motor system function due to stroke often leads to patients’ dependence on external assistance. The technique of rhythmic transcranial magnetic stimulation (rTMS) is now widely used in the restoration of impaired central nervous system (CNS) function. In recent years, there has been information about the use of transcutaneous electrical spinal cord stimulation (TSCS) in the correction of motor functions in CNS disorders of various genesis.
AIM. To evaluate the possibilities of combined use of transcranial magnetic and transcutaneous electrical stimulation of the spinal cord in the correction of locomotor functions in patients after ischemic stroke.
MATERIALS AND METHODS. The conducted blind clinical randomized study involved patients who had an ischemic stroke.
Study participants were randomly divided into control (n = 12) and experimental (n = 9) groups. Patients in the control group received standardized neurorehabilitation techniques. The participants of the experimental group were offered standardized neurorehabilitation techniques combined with rTMS and TSCS. High-frequency rTMS was performed in the projection of the sensory-motor cortex on the side of the lesion, in the area of innervation of the lower limb. During TSCS, a stimulating electrode was placed between Th11–Th12, indifferent electrodes were placed in the region of the iliac crests, and the lumbar enlargement of the spinal cord was stimulated. The dynamics of neurological deficit was assessed using the rehabilitation routing scale, the Rivermead mobility index, the Berg balance scale, and a six-point scale for assessing muscle strength. The excitability of the neural networks of the spinal cord was determined using TSCS at the T11–T12 level, with electromyographic recording of the evoked motor responses of the muscles of the lower extremities.
RESULTS AND DISCUSSION. The combined use of rTMS and TSCS in the rehabilitation of patients in the acute period after ischemic stroke leads to an increase in the excitability of neuronal networks of the lumbar thickening of the spinal cord, a decrease in the activation thresholds of the RF, BF, TA and GM muscles of the affected limb (by 7.7 ma, 18.3 ma, 24.8 ma and 14.2 ma, respectively). Inclusion of rTMS and TSCS in the rehabilitation course leads to a significant improvement in the rehabilitation routing scale (by 2 points), Rivermead mobility index (by 5.8 points), statokinetic control functions (balance-Berg by 12 points) and an increase in lower limb muscle strength (flexors by 5.1 points, extensors by 6.2 points).
CONCLUSION. The use of rTMS and TSCS can be used as an additional effect within the framework of rehabilitation measures in the acute period after ischemic stroke.

KEYWORDS: stroke, transcranial magnetic stimulation, transcutaneous electrical spinal cord stimulation, neurorehabilitation

Acknowledgments: The study had no sponsorship.

Conflict of interest:: The authors declare no apparent or potential conflicts of interest related to the publication of this article.

For citation: Ananyev S.S., Pavlov D.A., Yakupov R.N., Golodnova V.A., Balykin M.V. Transcranial Magnetic and Transcutaneous Spinal Cord Electrical Stimulation a Stroke-Patients Walking Correction: Blinded Clinical Randomised Study. Bulletin of Rehabilitation Medicine. 2023; 22(4):14-22. https://doi.org/10.38025/2078-1962-2023-22-4-14-22 (In Russ.). 

For correspondence: Sergey S. Ananyev, E-mail: sergananev13@gmail.com; ananevss@infran.ru



Список литературы:

  1. Huang, L., Shi, X., Zhang, N. et al. Bibliometric analysis of trends and issues in traditional medicine for stroke research: 2004–2018. BMC complementary medicine and therapies. 2020; 20(1): 39. https://doi.org/10.1186/s12906-020-2832-x
  2. Cengic L., Vueletic V., Karlick M. et al. Motor and cognitive impairment after stroke. Acta Clinica Croatica. 2011; 50: 463–467.
  3. Дружинина В.В., Колупаев М.А., Мельчакова А.А. и др. Патофизиология инсульта и его лечение. Международный студенческий научный вестник. 2018; 4(2): 228–231. [Druzhinina V.V., Kolupaev M.A., Melchakova A.A. Pathophysiology of stroke and its treatment. International Student Scientific Bulletin. 2018; 4(2): 228–231. (In Russ.).]
  4. Chervyakov A.V., Chernyavsky A.Y., Sinitsyn D.O., Piradov M.A. Possible Mechanisms Underlying the Therapeutic Effects of Transcranial Magnetic Stimulation. Front Hum Neurosci. 2015; 9 (7): 303. https://doi.org/10.3389/fnhum.2015.00303
  5. Kricheldorff J., Göke K., Kiebs M., et al. Evidence of Neuroplastic Changes after Transcranial Magnetic, Electric, and Deep Brain Stimulation. Brain Science. 2022; 12(7): 929. https://doi.org/10.3390/brainsci12070929
  6. Rossi S., Antal A., Bestmann S., Bikson M. et al. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clinical Neurophysiology. 2021; 132(1): 269–306. https://doi.org/10.1016/j.clinph.2020.10.003
  7. Lefaucheur J.-P., André-Obadia N., Antal A., et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS), Clinical Neurophysiology. 2014; 125 (11): 2150-2206. https://doi.org/10.1016/j.clinph.2014.05.021
  8. Gorodnichev R.M., Pivovarova E.A., Pukhov A., Moiseev S.A. et al. Transcutaneous electrical stimulation of the spinal cord: non-invasive tool for activation of locomotor circuitry in human. Human Physiology. 2012; 38 (2): 158–167. https://doi.org/10.1134/S0362119712020065
  9. Мошонкина Т.Р., Мусиенко П.Е., Богачева И.Н. и др. Регуляция локомоторной активности при помощи эпидуральной и чрескожной электрической стимуляции спинного мозга у животных и человека. Ульяновский медико-биологический журнал. 2012; 3: 129–137. [Moshonkina T.R., Musienko P.E., Bogacheva I.N. et al. Regulation of locomotor activity by epidural and percutaneous electrical stimulation of the spinal cord in animals and humans. Ulyanovsk medico-biological journal. 2012; 3: 129–137 (In Russ.).]
  10. Якупов Р.Н., Балыкин Ю.М., Котова Е.Ю. и др. Изменение силовых показателей мышц нижних конечностей при чрескожной электрической стимуляции спинного мозга. Ульяновский медико-биологический журнал. 2015; 4.99–103. [Yakupov R.N., Balykin Y.M., Kotova E.Y. et al. Changes in force indices of lower limb muscles during percutaneous electrical stimulation of the spinal cord. Ulyanovsk medico-biological journal. 2015; 4: 99–103. (In Russ.).]
  11. Рощина Л.В., Маркевич В.В., Иванов С.М. и др. Влияние длительной электрической и кратковременной электромагнитной стимуляции спинного мозга на параметры вызванных мышечных ответов человека. Ульяновский медико-биологический журнал. 2018; 2: 121–128. https://doi.org/10.23648/UMBJ.2018.30.14055 [Roschina L.V., Markevich V.V., Ivanov S.M. et al. Effect of prolonged electrical and short-term electromagnetic stimulation of the spinal cord on the parameters of evoked human muscle responses. Ulyanovsk medico-biological journal. 2018; 2: 121–128. https://doi.org/10.23648/UMBJ.2018.30.14055 (In Russ.).]
  12. Gerasimenko Y.P., Lu D.C., Modaber M., Zdunowski S. et al. Noninvasive Reactivation of Motor Descending Control after Paralysis. Journal of Neurotrauma. 2015; 12: 1968-80. https://doi.org/10.1089/neu.2015.4008
  13. Siu R., Brown E.H., Mesbah S. et al. Novel Noninvasive Spinal Neuromodulation Strategy Facilitates Recovery of Stepping after Motor Complete Paraplegia. Journal of Clinical Medicin. 2022; 11(13): 3670. https://doi.org/10.3390/jcm11133670
  14. Balykin M.V., Yakupov R.N., Mashin V.V., Kotova E.Y. et al. The influence of non-invasive electrical stimulation of the spinal cord on the locomotor function of patients presenting with movement disorders of central genesis. Vopr Kurortol Fizioter Lech Fiz Kult. 2017; 94(4): 4–9. https://doi.org/10.17116/kurort20179444-9
  15. Никитюк И.Е., Мошонкина Т.Р., Щербакова Н.А. и др. Влияние локомоторной тренировки и функциональной электромиостимуляции на постуральные функции у детей с тяжелыми формами детского церебрального паралича. Физиология человека. 2016; 42(3): 37–46. https://doi.org/10.7868/S0131164616030127 [Nikityuk I.E., Moshonkina T.R., Scherbakova N.A. и др. Influence of locomotor training and functional electromyostimulation on postural functions in children with severe forms of infantile cerebral palsy. Human Physiology. 2016; 42(3): 37–46. https://doi.org/10.7868/S0131164616030127 (In Russ.).]
  16. Reis J., Robertson E., Krakauer J.W. et al. Can tDCS and TMS enhance motor learning and memory formation. Brain Stimul. 2008; 1(4) 10: 363–369. https://doi.org/10.1016/j.brs.2008.08.001
  17. Volz L.J., Rehme A.K., Michely J. et al. Shaping Early Reorganization of Neural Networks Promotes Motor Function after Stroke. Cereb Cortex. 2016; 26(6): 2882–2894. https://doi.org/10.1093/cercor/bhw034
  18. Ackerley S.J., Stinear C.M., Barber P.A. et al. Combining theta burst stimulation with training after subcortical stroke. Stroke. 2010; 41(7): 1568-72. https://doi.org/10.1161/strokeaha.110.583278
  19. Talelli P., Wallace A., Dileone M. et al. Theta burst stimulation in the rehabilitation of the upper limb: a semirandomized, placebo-controlled trial in chronic stroke patients. Neurorehabilitation and Neural Repair. 2012; 26(8): 976-87. https://doi.org/10.1177/1545968312437940
  20. Bestmann S., Baudewig J., Siebner H.R. Subthreshold high-frequency TMS of human primary motor cortex modulates interconnected frontal motor areas as detected by interleaved fMRI-TMS. Neuroimage. 2003; 20(3): 1685-96. https://doi.org/10.1016/j.neuroimage.2003.07.028
  21. Bestmann S., Baudewig J., Siebner H.R. et al. BOLD MRI responses to repetitive TMS over human dorsal premotor cortex. Neuroimage. 2005; 15(28) 1: 22-9. https://doi.org/10.1016/j.neuroimage.2005.05.027
  22. Mori F., Codecà C., Kusayanagi H. et al. Effects of intermittent theta burst stimulation on spasticity in patients with multiple sclerosis. European Journal of Neurology. 2010; 17: 295–300. https://doi.org/10.1111/j.1468-1331.2009.02806.x
  23. Sayenko D.G., Rath M., Ferguson A.R. et al. Self-Assisted Standing Enabled by Non-Invasive Spinal Stimulation after Spinal Cord Injury. Journal of Neurotrauma. 2019; 36 (9): 1435–1450. https://doi.org/10.1089/neu.2018.5956
  24. Angeli C.A., Edgerton V.R., Gerasimenko Y.P., Harkema S.J. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain. 2014; 137(5) 4: 1394-409. https://doi.org/10.1093/brain/awu038
  25. Orlovsky G.N., Deliagina T.G., Grillner S. Neuronal Control of Locomotion. Oxford University. 1999.



Creative Commons License
The content is available under the Creative Commons Attribution 4.0 License.

©

Эта статья открытого доступа по лицензии CC BY 4.0. Издательство: ФГБУ «НМИЦ РК» Минздрава России.
This is an open article under the CC BY 4.0 license. Published by the National Medical Research Center for Rehabilitation and Balneology.