Выпуск 24-5, 2025
Обзорная статья
Иммунологические аспекты физиотерапии по данным клинических исследований: обзор
Вологжанин Д.А. 3,
Голота А.С. 3,*,
Игнатенко А.-М.И. 3,
Камилова Т.А. 3,
Ковлен Д.В. 2,
Усикова Е.В. 3,
Щербак С.Г. 1,3
1 Санкт-Петербургский государственный университет, Санкт-Петербург, Россия
2 Военно-медицинская академия имени С.М. Кирова Минобороны России, Санкт-Петербург, Россия
3 Городская больница № 40 Курортного административного района, Санкт-Петербург, Россия
РЕЗЮМЕ
ВВЕДЕНИЕ. Физиотерапевтические вмешательства применяются обычно на этапе реабилитации или как дополнение к основной (фармакологической или хирургической) терапии пациентов с хроническими заболеваниями или острыми состояниями. Интерес к иммунологическим аспектам физиотерапии быстро возрастает.
ЦЕЛЬ. Обобщить данные по иммунологическим аспектам физиотерапии, представленные в зарубежных публикациях последних пяти лет.
МАТЕРИАЛЫ И МЕТОДЫ. Поиск проводился в базах PubMed и Google Scholar с использованием ключевых слов: physiotherapy, immunology, innate immunity, acquired immunity, cellular immunity, humoral immunity, clinical trials. Из 207 найденных статей после применения критериев исключения отобрано 66 исследований.
ОСНОВНОЕ СОДЕРЖАНИЕ ОБЗОРА. Хронические заболевания, а также последствия травматических поражений характеризуются хроническим воспалением и иммунным дисбалансом. Несмотря на впечатляющие клинические успехи реабилитации, оно не всегда эффективно у некоторых пациентов, что подчеркивает необходимость понимания и преодоления механизмов терапевтической рефрактерности. Подобно другим терапевтическим средствам, физиотерапия сталкивается с трудностями прогнозирования ответа пациентов на вмешательство. Предполагается, что благотворное влияние физиотерапии связано с ее противовоспалительными, цитопротекторными и антиоксидантными свойствами и синергическим воздействием на иммунные функции. В нашей обзорной статье кратко рассмотрены клинические исследования с примерами, в которых показано влияние физиотерапевтических воздействий на популяционную структуру иммунной системы и секрецию цитокинов. Материал обзора структурирован по основным методам физиотерапии, как традиционным (массаж, лечение теплом, холодом, водой, ультразвуком, лазером, магнитным полем, гипербарическая оксигенация, пелоидотерапия), так и более новым (термическая и механическая абляция высокоинтенсивным ультразвуком).
ЗАКЛЮЧЕНИЕ. Представленные в обзоре материалы позволяют по-новому взглянуть на возможности физиотерапевтического влияния на врожденный и приобретенный иммунитет, их клеточный и гуморальный компоненты. Исследования в этом направлении еще только начинаются. Для разработки рекомендаций по безопасному применению иммуномодулирующей физиотерапии в контексте конкретных патологий необходимы дальнейшие масштабные клинические исследования. Кроме того, для точной интерпретации и использования данных физиотерапевты должны получить дополнительные знания в области иммунологии, в настоящее время выходящие за рамки их компетенции.
КЛЮЧЕВЫЕ СЛОВА: физиотерапия, иммунология, врожденный иммунитет, приобретенный иммунитет, клеточный иммунитет, гуморальный иммунитет, клинические исследования
ДЛЯ ЦИТИРОВАНИЯ:
Вологжанин Д.А., Голота А.С., Игнатенко А.-М.И., Камилова Т.А., Ковлен Д.В., Усикова Е.В., Щербак С.Г. Иммунологические аспекты физиотерапии по данным клинических исследований: обзор. Вестник восстановительной медицины. 2025; 24(5):73–83. https://doi.org/10.38025/2078-1962-2025-24-5-73-83 [Vologzhanin D.A., Golota A.S., Ignatenko A. M.I., Kamilova T.A., Kovlen D.V., Usikova E.V., Shcherbak S.G. Immunological Aspects of Physiotherapy According to the Latest Clinical Studies: a Review. Bulletin of Rehabilitation Medicine. 2025; 24(5):73–83. https://doi.org/10.38025/2078-1962-2025-24-5-73-83 (In Russ.).]
ДЛЯ КОРРЕСПОНДЕНЦИИ:
Голота Александр Сергеевич, Е-mail: golotaa@yahoo.com
Список литературы:
- Rich T.L., Silva M.A., O’Donnell F., et al. Exploring maintenance rehabilitation in adults with chronic conditions: a scoping review of the literature. Disabil Rehabil. 2024: 47(13): 3245–3255. https://doi.org/10.1080/09638288.2024.2417771
- Ishikawa Y., Furuyashiki T. The impact of stress on immune systems and its relevance to mental illness. Neurosci Res. 2022; 175:16–24. https://doi.org/10.1016/j.neures.2021.09.005
- Vänskä M., Kangaslampi S., Lindblom J., et al. How is mental health associated with adolescent alpha-amylase and cortisol reactivity and coordination? Int J Behav Dev. 2023; 48(1): 37–48. https://doi.org/10.1177/01650254231208965
- Van Tuijl L.A., Basten M., Pan K.Y., et al. Depression, anxiety, and the risk of cancer: An individual participant data meta-analysis. Cancer. 2023; 129(20): 3287–3299. https://doi.org/10.1002/cncr.34853
- Shaygani F., Marzaleh M.A., Jahangiri S. Fundamentals and applications of focused ultrasound-assisted cancer immune checkpoint inhibition for solid tumors. Pharmaceutics. 2024; 16(3): 411. https://doi.org/10.3390/pharmaceutics16030411
- Ma X., Wang Q., Sun C., et al. Targeting TCF19 sensitizes MSI endometrial cancer to anti-PD-1 therapy by alleviating CD8+ T-cell exhaustion via TRIM14-IFN-β axis. Cell Rep. 2023; 42(8): 112944. https://doi.org/10.1016/j.celrep.2023.112944
- Liu D., Zhang Y., Yu T., et al. Regulatory mechanism of the six-method massage antipyretic process on lipopolysaccharide-induced fever in juvenile rabbits: A targeted metabolomics approach. Heliyon. 2023; 10(1): e23313. https://doi.org/10.1016/j.heliyon.2023.e23313
- Siregar Z., Usman A.N,. Ahmad M., et al. Massage on the prevention of breast cancer through stress reduction and enhancing immune system. Breast Dis. 2024; 43(1): 119–126. https://doi.org/10.3233/BD-249009
- Jung O., Thomas A., Burks S.R., et al. Neuroinflammation associated with ultrasound-mediated permeabilization of the blood-brain barrier. Trends Neurosci. 2022; 45(6): 459–470. https://doi.org/10.1016/j.tins.2022.03.003
- Fite B.Z, Wang J., Kare A.J., et al. Immune modulation resulting from mr-guided high intensity focused ultrasound in a model of murine breast cancer. Sci. Rep. 2021; 11(1): 927. https://doi.org/10.1038/s41598-020-80135-1
- Рepple A.L., Guy J.L., McGinnis R., et al. Spatiotemporal local and abscopal cell death and immune responses to histotripsy focused ultrasound tumor ablation. Front. Immunol. 2023; 14: 1012799. https://doi.org/10.3389/fimmu.2023.1012799
- Wu N., Cao Y., Liu Y., et al. Low-intensity focused ultrasound targeted microbubble destruction reduces tumor blood supply and sensitizes anti-PD-L1 immunotherapy. Front. Bioeng. Biotechnol. 2023; 11: 1173381. https://doi.org/10.3389/fbioe.2023.1173381
- Abe S., Nagata H., Crosby E.J, et al. Combination of ultrasound-based mechanical disruption of tumor with immune checkpoint blockade modifies tumor microenvironment and augments systemic antitumor immunity. J. Immunother. Cancer. 2022; 10(1): e003717. https://doi.org/10.1136/jitc-2021–003717
- Hayashi F., Shigemura K., Maeda K., et al. Combined Treatment with Ultrasound and Immune Checkpoint Inhibitors for Prostate Cancer. J. Clin. Med. 2022; 11(9): 2448. https://doi.org/10.3390/jcm11092448
- Cohen G., Chandran P., Lorsung R.M., et al. Pulsed-Focused Ultrasound Slows B16 Melanoma and 4T1 Breast Tumor Growth through Differential Tumor Microenvironmental Changes. Cancers. 2021; 13(7): 1546. https://doi.org/10.3390/cancers13071546
- Liu B., Du F., Feng Z., et al. Ultrasound-augmented cancer immunotherapy. J Mater Chem B. 2024; 12(15): 3636–3658. https://doi.org/10.1039/d3tb02705h
- Pan J., Xu Y., Wu Q., et al. Mild magnetic hyperthermia-activated innate immunity for liver cancer therapy. J Am Chem Soc. 2021; 143(21): 8116–8128. https://doi.org/10.1021/jacs.1c02537
- Laukkanen J.A., Kunutsor S.K. The multifaceted benefits of passive heat therapies for extending the healthspan: A comprehensive review with a focus on Finnish sauna. Temperature (Austin). 2024; 11(1): 27–51. https://doi.org/10.1080/23328940.2023.2300623
- Kunutsor S.K., Lavie C.J., Laukkanen J. Finnish sauna and COVID-19. Infez Med. 2021; 29(1): 160–162.
- Patrick R.P., Johnson T.L. Sauna use as a lifestyle practice to extend healthspan. Exp Gerontol. 2021; 154: 111509. https://doi.org/10.1016/j.exger.2021.111509
- Maccarone M.C., Scanu A., Coraci D., et al. The potential role of spa therapy in managing frailty in rheumatic patients: a scoping review. Healthcare (Basel). 2023; 11(13): 11. https://doi.org/10.3390/healthcare11131899
- Scanu A., Tognolo L., Maccarone M.C., Masiero S. Immunological events, emerging pharmaceutical treatments and therapeutic potential of balneotherapy on osteoarthritis. Front Pharmacol. 2021; 12: 681871. https://doi.org/10.3389/fphar.2021.681871
- Mennuni G., Fontana M., Perricone C., et al. A meta-analysis of the effectiveness of mud-bath therapy on knee osteoarthritis. Clin Ter. 2021; 172(4): 372–387. https://doi.org/10.7417/CT.2021.2343
- Capodaglio P., Cremascoli R., Piterà P., Fontana J.M. Whole-body cryostimulation: a rehabilitation booster. J. Rehabil. Med. Clin. Commun. 2022; 5: 2810. https://doi.org/10.2340/jrmcc.v5.2810
- Dziedzic A., Maciak K., Miller E.D., et al. Targeting vascular impairment, neuroinflammation, and oxidative stress dynamics with whole-body cryotherapy in multiple sclerosis treatment. Int J Mol Sci. 2024; 25(7): 3858. https://doi.org/10.3390/ijms25073858
- Klemm P., Hoffmann J., Asendorf T., et al. Whole-body cryotherapy for the treatment of rheumatoid arthritis: a monocentric, single-blinded, randomised controlled trial. Clin Exp Rheumatol. 2022; 40(11): 2133–2140. https://doi.org/10.55563/clinexprheumatol/lrff6k
- Alito A., Verme F., Mercati G.P., et al. Whole body cryostimulation: a new adjuvant treatment in central sensitization syndromes? An expert opinion. Healthcare (Basel). 2024; 12(5): 546. https://doi.org/10.3390/healthcare12050546
- Rose C.L., McGuire H., Graham K., et al. Partial body cryotherapy exposure drives acute redistribution of circulating lymphocytes: preliminary findings. Eur J Appl Physiol. 2023; 123(2): 407–415. https://doi.org/10.1007/s00421-022-05058-3
- Li W., Lou Y., Wang G., et al. A novel multi-mode thermal therapy for colorectal cancer liver metastasis. Biomedicines. Biomedicines. 2022; 10(2): 280. https://doi.org/10.3390/biomedicines10020280
- Wang J., Lou Y., Wang S., et al. IFNγ at the early stage induced after cryo-thermal therapy maintains CD4+ Th1-prone differentiation, leading to long-term antitumor immunity. Front Immunol. 2024; 15: 1345046. https://doi.org/10.3389/fimmu.2024.1345046
- Velez A.F., Alvarez C.I., Navarro F. Cryoablation and immunity in non-small cell lung cancer: a new era of cryo-immunotherapy. Front Immunol. 2023; 14: 1203539. https://doi.org/10.3389/fimmu.2023.1203539
- Feng J., Guiyu D., Xiongwen W. The clinical efficacy of argon-helium knife cryoablation combined with nivolumab in the treatment of advanced non-small cell lung cancer. Cryobiology. 2021; 102: 92–96. https://doi.org/10.1016/j.cryobiol.2021.07.007
- Pochmann D., Peccin P.K., da Silva I.R.V., et al. Cytokine modulation in response to acute and chronic aquatic therapy intervention in Parkinson disease individuals. Neurosci Lett. 2018; 674: 30–35. https://doi.org/10.1016/j.neulet.2018.03.021
- Agulló-Ortuño M.T., Romay-Barrero H., Lambeck J., et al. Systemic inflammatory changes in spinal cord injured patients after adding aquatic therapy to standard physiotherapy treatment. Int J Mol Sci. 2024; 25(14): 7961. https://doi.org/10.3390/ijms25147961
- Bravo C., Rubí-Carnacea F., Colomo I., et al. Aquatic therapy improves self-reported sleep quality in fibromyalgia patients: a systematic review and meta-analysis. Sleep Breath. 2024; 28(2): 565–583. https://doi.org/10.1007/s11325-023-02933-x
- Zamunér A.R., Andrade C.P., Arca E.A., Avila M.A. Impact of water therapy on pain management in patients with fibromyalgia: current perspectives. J Pain Res. 2019; 12: 1971–2007. https://doi.org/10.2147/JPR.S161494
- Hossein-Khannazer N., Kazem Arki M., Keramatinia A., Rezaei-Tavirani M. Low-level laser therapy for rheumatoid arthritis: a review of experimental approaches. J Lasers Med Sci. 2022; 13: e62. https://doi.org/10.34172/jlms.2022.62
- Lee J.H., Chiang M.H., Chen P.H., et al. Anti-inflammatory effects of low-level laser therapy on human periodontal ligament cells: in vitro study. Lasers Med Sci. 2018; 33(3): 469–477. https://doi.org/10.1007/s10103-017-2376-6
- Hennessy M., Hamblin M.R. Photobiomodulation and the brain: a new paradigm. J Opt. 2017; 19(1): 013003. https://doi.org/10.1088/2040-8986/19/1/013003
- Dompe C., Moncrieff L., Matys J., et al. Photobiomodulation-underlying mechanism and clinical applications. J Clin Med. 2020; 9(6): 1724. https://doi.org/10.3390/jcm9061724
- Fangel R., Vendrusculo-Fangel L.M., de Albuquerque C.P., et al. Low level laser therapy for reducing pain in rheumatoid arthritis and osteoarthritis: a systematic review. Fisioter Mov. 2019; 32(6): e003229. https://doi.org/10.1590/1980-5918.032.ao29
- Huang Z., Hamblin M.R., Zhang Q. Photobiomodulation in experimental models of Alzheimer’s disease: state-of-the-art and translational perspectives. Alzheimers Res Ther. 2024; 16(1): 114. https://doi.org/10.1186/s13195-024-01484-x
- Stepanov Y.V., Golovynska I., Zhang R., et al. Near-infrared light reduces beta-amyloid-stimulated microglial toxicity and enhances survival of neurons: mechanisms of light therapy for Alzheimer’s disease. Alzheimers Res Ther. 2022; 14(1): 84. https://doi.org/10.1186/s13195-022-01022-7
- Yang L., Wu C., Parker E., et al. Non-invasive photobiomodulation treatment in an Alzheimer disease-like transgenic rat model. Theranostics. 2022; 12(5): 2205–2231. https://doi.org/10.7150/thno.70756
- Wu X., Shen Q., Chang H., et al. Promoted CD4(+) T cell-derived IFN-gamma/IL-10 by photobiomodulation therapy modulates neurogenesis to ameliorate cognitive deficits in APP/PS1 and 3xTg-AD mice. J Neuroinflammation. 2022; 19(1): 253. https://doi.org/10.1186/s12974-022-02617-5
- Faulin T.D.E.S., Estadella D. Alzheimer’s disease and its relationship with the microbiota-gut-brain axis. Arq Gastroenterol. 2023; 60(1): 144–154. https://doi.org/10.1590/S0004-2803.202301000-17
- Heston M.B., Hanslik K.L., Zarbock K.R., et al. Gut inflammation associated with age and Alzheimer’s disease pathology. Sci Rep. 2023; 13(1): 18924. https://doi.org/10.1038/s41598-023-45929-z
- Lee R.L., Funk K.E. Imaging blood-brain barrier disruption in neuroinflammation and Alzheimer’s disease. Frontiers Aging Neuroscience. 2023; 15: 1144036. https://doi.org/10.3389/fnagi.2023.1144036
- Sharma A., Martins I.J. The role of microbiota in the pathogenesis of Alzheimer’s disease. Acta Sci Nutritional Health. 2023; 7(7): 108–118. https://doi.org/10.31080/ASNH.2023.07.1272
- Cattaneo A., Cattane N., Galluzzi S., et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiology of Aging. 2017; 49: 60–68. https://doi.org/10.1016/j.neurobiolaging.2016.08.019
- Blivet G., Roman F.J., Lelouvier B., et al. Photobiomodulation therapy: a novel therapeutic approach to Alzheimer’s disease made possible by the evidence of a brain-gut interconnection. J Integr Neurosci. 2024; 23(5): 92. https://doi.org/10.31083/j.jin2305092
- Sheng R., Chen C., Chen H., Yu P. Repetitive transcranial magnetic stimulation for stroke rehabilitation: insights into the molecular and cellular mechanisms of neuroinflammation. Front Immunol. 2023; 14: 1197422. https://doi.org/10.3389/fimmu.2023.1197422
- Wang Q., Zeng L., Hong W., et al. Inflammatory cytokines changed in patients with depression before and after repetitive transcranial magnetic stimulation treatment. Front Psychiatry. 2022; 13: 925007. https://doi.org/10.3389/fpsyt.2022.925007
- Rajkumar R.P. Immune-inflammatory markers of response to repetitive transcranial magnetic stimulation in depression: A scoping review. Asian J Psychiatr. 2024; 91: 103852. https://doi.org/10.1016/j.ajp.2023.103852
- Cao P., Li Y., An B., et al. Efficacy and safety of repetitive transcranial magnetic stimulation combined with antidepressants in children and adolescents with depression: A systematic review and meta-analysis. J Affect Disord. 2023; 336: 25–34. https://doi.org/10.1016/j.jad.2023.05.051
- Tateishi H., Mizoguchi Y., Monji A. Is the therapeutic mechanism of repetitive transcranial magnetic stimulation in cognitive dysfunctions of depression related to the neuroinflammatory processes in depression? Front Psychiatry. 2022; 13: 834425. https://doi.org/10.3389/fpsyt.2022.834425
- Zhao X., Li Y., Tian Q., et al. Repetitive transcranial magnetic stimulation increases serum brain-derived neurotrophic factor and decreases interleukin-1β and tumor necrosis factor-α in elderly patients with refractory depression. J Int Med Res. 2019; 47(5): 1848–1855. https://doi.org/10.1177/0300060518817417
- Feng P., Zhang Y., Zhao Y., et al. Combined repetitive transcranial magnetic stimulation and gut microbiota modulation through the gut-brain axis for prevention and treatment of autism spectrum disorder. Front Immunol. 2024; 15: 1341404. https://doi.org/10.3389/fimmu.2024.1341404
- Korenblik V., Brouwer M.E., Korosi A., et al. Are neuromodulation interventions associated with changes in the gut microbiota? a systematic review. Neuropharmacol. 2023; 223: 109318. https://doi.org/10.1016/j.neuropharm.2022.109318
- Pateraki G., Anargyros K., Aloizou A.M., et al. Therapeutic application of rTMS in neurodegenerative and movement disorders: A review. J Electromyography Kinesiol. 2022; 62: 102622. https://doi.org/10.1016/j.jelekin.2021.102622
- Bai Y.W., Yang Q.H., Chen P.J., Wang X.Q. Repetitive transcranial magnetic stimulation regulates neuroinflammation in neuropathic pain. Front Immunol. 2023; 14: 1172293. https://doi.org/10.3389/fimmu.2023.1172293
- Dicks L.M.T. Gut bacteria and neurotransmitters. Microorganisms. 2022; 10(9): 1838. https://doi.org/10.3390/microorganisms10091838
- Mitra S., Dash R., Nishan A.A., et al. Brain modulation by the gut microbiota: From disease to therapy. J Advanced Res. 2023; 53: 153–173. https://doi.org/10.1016/j.jare.2022.12.001
- Capó X., Monserrat-Mesquida M., Quetglas-Llabrés M., et al. Hyperbaric oxygen therapy reduces oxidative stress and inflammation, and increases growth factors favouring the healing process of diabetic wounds. Int. J. Mol. Sci. 2023; 24(8): 7040. https://doi.org/10.3390/ijms24087040
- Cannellotto M., Yasells García A., Landa M.S. Hyperoxia: effective mechanism of hyperbaric treatment at mild-pressure. Int J Mol Sci. 2024; 25(2): 777. https://doi.org/10.3390/ijms25020777
- Wu X., You J., Chen X., et al. An overview of hyperbaric oxygen preconditioning against ischemic stroke. Metab Brain Dis. 2023; 38(3): 855–872. https://doi.org/10.1007/s11011-023-01165-y
Контент доступен под лицензией Creative Commons Attribution 4.0 License.
©
Эта статья открытого доступа по лицензии CC BY 4.0. Издательство: ФГБУ «НМИЦ РК» Минздрава России.

