Выпуск 24-6, 2025

Обзорная статья

Современные терапевтические стратегии лечения радиационно-индуцированных повреждений кожи: обзор литературы



ORCIDЕрёмин П.С.*, ORCIDРожкова Е.А.

Национальный медицинский исследовательский центр реабилитации и курортологии Минздрава России, Москва, Россия


РЕЗЮМЕ

ВВЕДЕНИЕ. Радиационно-индуцированные повреждения кожи остаются серьезной клинической проблемой, затрагивая значительную часть пациентов, проходящих курс лучевой терапии, а также лиц, подвергшихся воздействию радиации в результате аварий или экологических факторов. Патогенез таких повреждений чрезвычайно сложен и включает как острые, так и отсроченные клеточные реакции: повреждение дезоксирибонуклеиновой кислоты (ДНК), оксидативный стресс, воспаление, сосудистые нарушения, а также активацию процессов апоптоза, некроза и клеточного старения в эпидермальных и дермальных структурах.

ЦЕЛЬ. Обобщить современные представления о молекулярных механизмах, лежащих в основе лучевого поражения кожи, оценить современные терапевтические подходы, включая технологии регенеративной медицины.

МАТЕРИАЛЫ И МЕТОДЫ. Обзор литературных данных проводился по базам данных PubMed и ScienceDirect. Даты запросов: сентябрь–октябрь 2025 г.

ОСНОВНОЕ СОДЕРЖАНИЕ ОБЗОРА. В обзоре систематизированы современные данные о молекулярных и клеточных механизмах радиационных поражений кожи, включая повреждение ДНК, нарушение редокс-гомеостаза, воспалительные и сосудистые реакции, апоптоз, некроз и сенесценцию. Особое внимание уделено анализу новых регенеративных подходов — клеточных, бесклеточных и биоинженерных технологий, направленных на восстановление структуры и функции кожи. Рассмотрены перспективы применения мезенхимальных стволовых клеток, клет

ЗАКЛЮЧЕНИЕ. Актуальность темы обусловлена высокой частотой кожных осложнений у пациентов, проходящих лучевую терапию, и отсутствием универсальных стандартов их лечения. Комплексное понимание патогенетических механизмов и развитие регенеративных технологий открывают перспективу создания персонализированных терапевтических протоколов, направленных на восстановление морфофункциональной целостности и повышение качества жизни пациентов.


КЛЮЧЕВЫЕ СЛОВА: радиационно-индуцированные повреждения кожи, оксидативный стресс, клеточное старение, ме-зенхимальные стволовые клетки, стромально-васкулярная фракция, экзосомы, регенеративная медицина, тканевая инженерия

ДЛЯ ЦИТИРОВАНИЯ: Ерёмин П.С., Рожкова Е.А. Современные терапевтические стратегии лечения радиационно- индуцированных повреждений кожи: обзор литературы. Вестник восстановительной медицины. 2025; 24(6):110–117. https://doi.org/10.38025/2078-1962-2025-24-6-110-117 [Eremin P.S., Rozhkova E.A. Current Therapeutic Strategies for the Treatment of Radiation-Induced Skin Damages: a Literature Review. Bulletin of Rehabilitation Medicine. 2025; 24(6):110–117. https://doi.org/10.38025/2078-1962-2025-24-6-110-117 (In Russ.).]

ДЛЯ КОРРЕСПОНДЕНЦИИ:

Ерёмин Пётр Серафимович, Email: ereminps@gmail.com, ereminps@nmicrk.ru


Список литературы:

  1. Bey E., Prat M., Duhamel P., et al. Emerging therapy for improving wound repair of severe radiation burns using local bone marrow-derived stem cell administrations. Wound Repair Regen. 2010; 18(1): 50–58. https://doi.org/10.1111/j.1524-475X.2009.00562.x
  2. Huang C., Li H., Zhang Z., et al. From Mechanism to Therapy: The Role of MSC-EVs in Alleviating Radiation-Induced Injuries. Pharmaceutics. 2025; 17(5): 652. https://doi.org/10.3390/pharmaceutics17050652
  3. Miura Y., Fujii S., Ichinohe T. Cell-based and extracellular vesicle-based MSC therapies for acute radiation syndrome affecting organ systems. J Radiat Res. 2024; 65: i80–i87. https://doi.org/10.1093/jrr/rrae009
  4. Talapko J., Talapko D., Katalinić D., et al. Health Effects of Ionizing Radiation on the Human Body. Medicina (Kaunas, Lithuania). 2024; 60(4): 653. https://doi.org/10.3390/medicina60040653
  5. Singh M., Alavi A., Wong R., Akita S. Radiodermatitis: A Review of Our Current Understanding. Am J Clin Dermatol. 2016; 17(3): 277–292. https://doi.org/10.1007/s40257-016-0186-4
  6. Cui J., Wang T.J., Zhang Y.X., et al. Molecular biological mechanisms of radiotherapy-induced skin injury occurrence and treatment. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2024; 180: 117470. https://doi.org/10.1016/j.biopha.2024.117470
  7. Kreuder L., Bissey P.A., Yip KW., Liu F.F. Exploring radiation-induced fibrosis: biological mechanisms and new frontiers in research and therapeutics. International journal of radiation biology. 2025; 1–16. https://doi.org/10.1080/09553002.2025.2540353
  8. Jo H., Brito S., Kwak B.M., et al. Applications of Mesenchymal Stem Cells in Skin Regeneration and Rejuvenation. International journal of molecular sciences. 2021; 22(5): 2410. https://doi.org/10.3390/ijms22052410
  9. Jimenez-Garcia C., Perula-de Torres L.A., Villegas-Becerril E., et al. Alantel Trial Collaborative Group. Efficacy of an aloe vera, chamomile, and thyme cosmetic cream for the prophylaxis and treatment of mild dermatitis induced by radiation therapy in breast cancer patients: a controlled clinical trial (Alantel Trials). Trials. 2024; 25(1): 84. https://doi.org/10.1186/s13063-024-07901-8
  10. Kura B., Pavelkova P., Kalocayova B., et al. MicroRNAs as Regulators of Radiation-Induced Oxidative Stress. Current issues in molecular biology. 2024; 46(7): 7097–7113. https://doi.org/10.3390/cimb46070423
  11. Yu Z., Xu C., Song B., et al. Tissue fibrosis induced by radiotherapy: current understanding of the molecular mechanisms, diagnosis and therapeutic advances. Journal of translational medicine. 2023; 21(1): 708. https://doi.org/10.1186/s12967-023-04554-0
  12. Liu C., Wei J., Wang X., et al. Radiation-induced skin reactions: oxidative damage mechanism and antioxidant protection. Frontiers in cell and developmental biology. 2024; 12: 1480571. https://doi.org/10.3389/fcell.2024.1480571
  13. Yao C., Zhou Y., Wang H., et al. Adipose-derived stem cells alleviate radiation-induced dermatitis by suppressing apoptosis and downregulating cathepsin F expression. Stem cell research & therapy. 2021; 12(1): 447. https://doi.org/10.1186/s13287-021-02516-1
  14. Ma M., Jiang W., Zhou R. DAMPs and DAMP-sensing receptors in inflammation and diseases. Immunity. 2024; 57(4): 752–771. https://doi.org/10.1016/j.immuni.2024.03.002
  15. Zhang L., Pitcher L.E., Yousefzadeh M.J., et al. Cellular senescence: a key therapeutic target in aging and diseases. The Journal of clinical investigation. 2022; 132(15): e158450. https://doi.org/10.1172/JCI158450
  16. Singh M., Alavi A., Wong R., Akita S. Radiodermatitis: A Review of Our Current Understanding. Am J Clin Dermatol. 2016; 17(3): 277–292. https://doi.org/10.1007/s40257-016-0186-4
  17. McElroy P.L., Wei P., Buck K., et al. Romiplostim promotes platelet recovery in a mouse model of multicycle chemotherapy-induced thrombocytopenia. Experimental hematology. 2015; 43(6): 479–487. https://doi.org/10.1016/j.exphem.2015.02.004
  18. Bussel J.B., Soff G., Balduzzi A., et al. A Review of Romiplostim Mechanism of Action and Clinical Applicability. Drug design, development and therapy. 2021; 15: 2243–2268. https://doi.org/10.2147/DDDT.S299591
  19. Gupta K., Perkerson R.B., Parsons T.M., et al. Secretome from iPSC-derived MSCs exerts proangiogenic and immunosuppressive effects to alleviate radiation-induced vascular endothelial cell damage. Stem Cell Res Ther. 2024: 15(1): 230. https://doi.org/10.1186/s13287-024-03847-5
  20. He N., Dong M., Sun Y., et al. Mesenchymal stem cell-derived extracellular vesicles targeting irradiated intestine exert therapeutic effects. Theranostics. 2024; 14(14): 5492–5511. https://doi.org/10.7150/thno.97623
  21. Lai P., Weng J., Guo L. Novel insights into MSC-EVs therapy for immune diseases. Biomarker research. 2019; 7: 6. https://doi.org/10.1186/s40364-019-0156-0
  22. Chang P.Y., Zhang B.Y., Cui S., et al. MSC-derived cytokines repair radiation-induced intra-villi microvascular injury. Oncotarget. 2017; 8(50): 87821–87836. https://doi.org/10.18632/oncotarget.21236
  23. Zhang B., Zhang B., Lai R., et al. MSC-sEV Treatment Polarizes Pro-Fibrotic M2 Macrophages without Exacerbating Liver Fibrosis in NASH. International journal of molecular sciences. 2023; 24(9): 8092. https://doi.org/10.3390/ijms24098092
  24. Xu T., Zhang Y., Chang P., et al. Mesenchymal stem cell-based therapy for radiation-induced lung injury. Stem cell research & therapy. 2018; 9(1): 18. https://doi.org/10.1186/s13287-018-0776-6
  25. Zanoni M., Cortesi M., Zamagni A., Tesei A. The Role of Mesenchymal Stem Cells in Radiation-Induced Lung Fibrosis. International journal of molecular sciences. 2019; 20(16): 3876. https://doi.org/10.3390/ijms20163876
  26. Guan Z., Zhang J., Jiang N., et al. Efficacy of mesenchymal stem cell therapy in rodent models of radiation-induced xerostomia and oral mucositis: a systematic review. Stem cell research & therapy. 2023; 14(1): 82. https://doi.org/10.1186/s13287-023-03301-y
  27. Koh R.H., Jin Y., Kang B.J., Hwang N.S. Chondrogenically primed tonsil-derived mesenchymal stem cells encapsulated in riboflavin-induced photocrosslinking collagen-hyaluronic acid hydrogel for meniscus tissue repairs. Acta Biomaterialia. 2017; 53: 318–328. https://doi.org/10.1016/j.actbio.2017.01.081
  28. Wang T., Jian Z., Baskys A., et al. MSC-derived exosomes protect against oxidative stress-induced skin injury via adaptive regulation of the NRF2 defense system. Biomaterials. 2020; 257: 120264. https://doi.org/10.1016/j.biomaterials.2020.120264
  29. Zhang W.Y., Wen L., Du L., et al. S-RBD-modified and miR-486-5p-engineered exosomes derived from mesenchymal stem cells suppress ferroptosis and alleviate radiation-induced lung injury and long-term pulmonary fibrosis. Journal of nanobiotechnology. 2024; 22(1): 662. https://doi.org/10.1186/s12951-024-02830-9
  30. Yu M., Liu W., Li J., et al. Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway. Stem cell research & therapy. 2020; 11(1): 350. https://doi.org/10.1186/s13287-020-01824-2
  31. Hu Y., Rao S.S., Wang Z.X., et al. Exosomes from human umbilical cord blood accelerate cutaneous wound healing through miR-21-3p-mediated promotion of angiogenesis and fibroblast function. Theranostics. 2018; 8(1): 169–184. https://doi.org/10.7150/thno.21234
  32. Zhao S., Li W., Yu W., et al. Exosomal miR-21 from tubular cells contributes to renal fibrosis by activating fibroblasts via targeting PTEN in obstructed kidneys. Theranostics. 2021; 11(18): 8660–8673. https://doi.org/10.7150/thno.62820
  33. Zhou L., Zhu J., Liu Y., et al. Mechanisms of radiation-induced tissue damage and response. MedComm. 2024; 5(10): e725. https://doi.org/10.1002/mco2.725
  34. Niu S., Zhang Y. Applications and therapeutic mechanisms of action of mesenchymal stem cells in radiation-induced lung injury. Stem cell research & therapy. 2021; 12(1): 212. https://doi.org/10.1186/s13287-021-02279-9
  35. Yang Y., Zhang J., Wu S., et al. Exosome/antimicrobial peptide laden hydrogel wound dressings promote scarless wound healing through miR-21-5p-mediated multiple functions. Biomaterials. 2024; 308: 122558. https://doi.org/10.1016/j.biomaterials.2024.122558
  36. Еремин П.С., Рожкова Е.А., Марков П.А. Модификация и характеристика биофункциональных свойств коллагенсодержащих ксерогелей медицинского назначения: результаты экспериментального исследования. Вестник восстановительной медицины. 2025; 24(3): 29–37. https://doi.org/10.38025/2078-1962-2025-24-3-29-37 [Eremin P.S., Rozhkova E.A., Markov P.A. Modification and Characteristics of Biofunctional Properties of Collagen-Containing Xerogels for Medical Purposes: an Experimental Study Results. Bulletin of Rehabilitation Medicine. 2025; 24(3): 29–37. https://doi.org/10.38025/2078-1962-2025-24-3-29-37 (In Russ.).]
  37. Huang D., Li Y., Ma Z., et al. Collagen hydrogel viscoelasticity regulates MSC chondrogenesis in a ROCK-dependent manner. Science advances, 2023; 9(6): eade9497. https://doi.org/10.1126/sciadv.ade9497
  38. Yang X., Ahmad K., Yang T., et al. Collagen-based hydrogel sol-gel phase transition mechanism and their applications. Advances in colloid and interface science. 2025; 340: 103456. https://doi.org/10.1016/j.cis.2025.103456
  39. Wang Y., Zhang Y., Yang Y.P., et al. Versatile dopamine-functionalized hyaluronic acid-recombinant human collagen hydrogel promoting diabetic wound healing via inflammation control and vascularization tissue regeneration. Bioactive materials. 2024; 35: 330–345. https://doi.org/10.1016/j.bioactmat.2024.02.010
  40. Gao Y., Liu Q., Kong W., Wang J., et al. Activated hyaluronic acid/collagen composite hydrogel with tunable physical properties and improved biological properties. International journal of biological macromolecules. 2020; 164: 2186–2196. https://doi.org/10.1016/j.ijbiomac.2020.07.319
  41. Волкова М.В., Ковалевский Я.Б., Еремин П.С. и др. Сравнительная оценка биосовместимости губок на основе различных солей хитозана in vitro. Вестник восстановительной медицины. 2024; 23(6): 45–53. https://doi.org/10.38025/2078-1962-2024-23-6-45-53 [Volkova M.V., Kovalevsky Y.B., Eremin P.S., et al. Comparative Evaluation of the Biocompatibility of Sponges Based on Different Chitosan Salts in vitro. Bulletin of Rehabilitation Medicine. 2024; 23(6): 45–53. https://doi.org/10.38025/2078-1962-2024-23-6-45-53 (In Russ.).]
  42. Wang T., Yi W., Zhang Y., Wu H., et al. Sodium alginate hydrogel containing platelet-rich plasma for wound healing. Colloids and surfaces. B, Biointerfaces. 2023; 222: 113096. https://doi.org/10.1016/j.colsurfb.2022.113096
  43. Kim S., Kim C. Transcriptomic Analysis of Cellular Senescence: One Step Closer to Senescence Atlas. Mol Cells. 2021; 44(3): 136–145. https://doi.org/10.14348/molcells.2021.2239
  44. Weng T., Zhang W., Xia Y., et al. 3D-bioprinting for skin tissue engineering: Current status and perspectives. Journal of tissue engineering. 2021; 12: 20417314211028574. https://doi.org/10.1177/20417314211028574
  45. Heydari P., Kharazi A.Z. pH-sensitive PβAE/PGS hydrogels for controlled release of SMV and CIP: enhanced wound healing and targeted immunomodulatory properties for efficient skin regeneration. International journal of pharmaceutics. 2025; 684: 126165. https://doi.org/10.1016/j.ijpharm.2025.126165
  46. Chen Y., Li Y., Song H., et al. Injectable Nanocomposite Hydrogel for Accelerating Diabetic Wound Healing Through Inflammatory Microenvironment Regulation. International journal of nanomedicine. 2025; 20: 1679–1696. https://doi.org/10.2147/IJN.S505918
  47. Shende P., Trivedi R. 3D-printed bioconstructs: regenerative modulation for genetic expression. Stem cell reviews and reports. 2021; 17(4): 1239–1250. https://doi.org/10.1007/s12015-021-10120-2
  48. Xu C., Wu F., Duan Z., et al. Microneedle-aided nanotherapeutics delivery and nanosensor intervention in advanced tissue regeneration. Journal of nanobiotechnology. 2025; 23(1): 330. https://doi.org/10.1186/s12951-025-03383-1
  49. Kato T., Liu N., Morinaga H., Asakawa K., et al. Dynamic stem cell selection safeguards the genomic integrity of the epidermis. Developmental cell. 2021; 56(24): 3309–3320.e5. https://doi.org/10.1016/j.devcel.2021.11.018
  50. Rani S., Ryan A.E., Griffin M.D., Ritter T. Mesenchymal Stem Cell-derived Extracellular Vesicles: Toward Cell-free Therapeutic Applications. Molecular therapy: the journal of the American Society of Gene Therapy. 2015; 23(5): 812–823. https://doi.org/10.1038/mt.2015.44
  51. Palakurthi S.S., Shah B., Kapre S., et al. A comprehensive review of challenges and advances in exosome-based drug delivery systems. Nanoscale advances. 2024; 6(23): 5803–5826. https://doi.org/10.1039/d4na00501e



Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.

©
Эта статья открытого доступа по лицензии CC BY 4.0. Издательство: ФГБУ «НМИЦ РК» Минздрава России.