Issue 2-20, 2020
Potential benefits and limitations of robotic exoskeleton usage in patients with spinal cord injury: a review
1 Karjakin N.N., 1 Belova A.N., 1 Sushin V.O., 1 Sheiko G.E., 1 Israeljan Y.A., 1 Litvinova N.Y.
1 Privolzhsky Research Medical University, Nizhny Novgorod, Russian Federation
ABSTRACT
Restoration of motor functions in patients with spinal cord injury (SCI) is a priority problem of this patient’s categorymedical rehabilitation. Despite the achievements of modern medicine, the level of movement restoration after SCI isoften insignificant, many patients stayed confined to a wheelchair. Secondary complications (osteoporosis, obesity,cardiovascular, respiratory, urogenital, trophic and other disorders) used to develop in the injured people as a result oflow physical activity, they aggravate the course of the main disease and complicate the process of medical rehabilitation.A hope for rehabilitation specialist and patients is associated with the appearance of robotic exoskeletons (RES), thatmight become an innovation means for improving the mobility of patients with SCI. The purpose of the review is toprovide information on the possible benefits and disadvantages of the use of RES in the rehabilitation of patients withSCI. This article discusses the general characteristics of modern exoskeletons and the conditions of their use for patientswith paralysis of the lower extremities. The article presents Information on the effectiveness and safety of the use ofexoskeleton devices in neurorehabilitation, as well as data on limitations and problems associated with exoskeletonuse in clinical practice. The results of meta-analyses and randomized studies on the potential benefits of the RES usageboth in everyday life and in rehabilitation of patients with SCI are presented. The influence of walking training in theexoskeleton on the degree of motor functions improvement, overall physical activity level and body weight in patientswith SCI is highlighted. The article draws attention to the unsolved problems and further perspectives of RES applicationin patients with SCI. It emphasizes the necessity for protocols standardization and large randomized comparative clinicaltrials organization with prolonged observational period of patients in order to determine exoskeletons usage potential.
KEYWORDS: neurorehabilitation, robotic devices, exoskeletons, spinal cord injury, invalid, paresis
FOR CITATION: Karjakin N.N., Belova A.N., Sushin V.O., Sheiko G.E., Israeljan Y.A., Litvinova N.Y Potential benefits and limitations of robotic exoskeleton usage in patients with spinal cord injury: a review. Bulletin of rehabilitation medicine. 2020; 96 (2): 68-78. https://doi.org/10.38025/2078-1962-2020-96-2-68-78
References:
- Lee B.B., Cripps R.A., Fitzharris M., Wing P.C. The global map for traumatic spinal cord injury epidemiology: update 2011, global incidence rate. Spinal Cord, 2014: 52(2): 110 - 116 DOI: 10.1038/sc.2012.158
- Lajeunesse V., Vincent C., Routhier F., Careau E., Michaud F. Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. Disabil Rehabil Assist Technol, 2016: 11(7): 535 - 547 DOI: 10.3109/17483107.2015.1080766
- Fisahn C., Aach M., Jansen O., Moisi M., Mayadev A., Pagarigan K.T., Dettori J.R., Schildhauer T.A. The Effectiveness and Safety of Exoskeletons as Assistive and Rehabilitation Devices in the Treatment of Neurologic Gait Disorders in Patients with Spinal Cord Injury. 2016: 6(8): 822 - 84 DOI: 10.1055/s-0036-1593805
- Baunsgaard B.C., Nissen V.U., Brust K.A., Frotzler A., Ribeill C., Kalke Y.B., Leon N., Gomez B., Samuelsson K., Antepohl W., Holmstrom U., Marklund N., Glott T., Opheim A., Benito J., Murillo N., Nachtegaal J., Faber W., Biering-S0rensen F. Gait training after spinal cord injury: safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionics. Spinal Cord, 2018: (56): 106 - 116 DOI: 10.1038/s41393-017-0013-7
- Mehrholz J., Kugler J., Pohl M. Locomotor training for walking after spinal cord injury. Cochrane Database Syst Rev., 2012: 11 DOI: 10.1002/14651858. CD006676.pub3.
- Sezer N., Akkus S., Ugurlu F.G. Chronic complications of spinal cord injury. World J Orthop., 2015: 6(1): 24 - 33 DOI: 10.5312/wjo.v6.i1.24
- Mekki M., Delgado A.D., Fry A., Putrino D., Huang V. Robotic Rehabilitation and Spinal Cord Injury, a Narrative Review. Neurotherapeutics, 2018: 15(3): 604 - 617 DOI: 10.1007/s13311-018-0642-3
- Muijzer-Witteveen H., Sibum N., van Dijsseldonk R., Keijsers N., van Asseldonk E. [Questionnaire results of user experiences with wearable exoskeletons and their preferences for sensory feedback]. J Neuroeng Rehabil., 2018: 15(1): 112 p. DOI: 10.1186/s12984-018-0445-0
- Huang V.S., Krakauer J.W. Robotic neurorehabilitation: a computational motor learning perspective. J. Neuroeng Rehabil., 2009: (6): 5 p. DOI: 10.1186/1743-0003-6-5
- Gorgey A., Sumrell R., Goetz L. Exoskeletal assisted rehabilitation after spinal cord injury. In: Atlas of Orthoses and Assistive Devices. 5th ed. Canada, Elsevier, 2018: 440 - 447
- Miller L.E., Zimmermann A.K., Herbert W.G. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis. Med Devices (Auckl), 2016: 9: 455 - 466 DOI: 10.2147/MDER.S103102
- Palermo A. E., Maher J. L., Baunsgaard C. B., Nash M. S. Clinician-focused overview of bionic exoskeleton use after spinal cord injury. Topics in Spinal Cord Injury Rehabilitation, 2017: 23(3): 234 - 244 DOI: 10.1310/sci2303-234
- Gorgey A.S. Robotic exoskeletons: The current pros and cons. World J Orthop., 2018: 9(9): 112 - 119 DOI: 10.5312/wjo.v9.i9.112
- Aach M., Cruciger O., Sczesny-Kaiser M., Hoffken O., Meindl R.Ch., Tegenthoff M., Schwenkreis P., Sankai Y., Schildhauer T.A. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Spine J., 2014: 14(12): 2847 - 2853 DOI: 10.1016/j.spinee.2014.03.042
- Belova A.N., Borzikov V.V., Kuznetsov A.N., Rukina N.N. Robotizirovannye tekhnologii v nejroreabilitacii: sostoyanie voprosa [Robotic technologies in neurorehabilitation: state of the issue]. Vestnik vosstanovitelnoj mediciny, 2018: 2(84): 94 - 107 (In Russ.)
- Bushkov F.A., Kleshchunov S.S., Kosiaeva S.V., Bzhiliansky M.A., Ivanova G.E., Shatalova O.G. Klinicheskoe issledovanie primeneniya ekzoskeleta «Exoatlet» u spinal'nyh pacientov [Clinical trial applications of the locomotion exoskeleton Exoatlet in spinal patients]. Vestnik vosstanovitelnoj mediciny, 2017: 2(78): 90 - 100 (In Russ.)
- Spungen A.M., Asselin P.K., Fineberg D.B., Kornfeld S.D., Harel N.Y. Exoskeletal-assisted walking for persons with motor-complete paraplegia. Paper presented at: NATO Science and Technology Organization. Milan, Italy, 2013: 15 - 17
- Louie D.R., Eng J.J., Lam T. Spinal Cord Injury Research Evidence (SCIRE) Research Team. Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study. J Neuroeng Rehabil., 2015: 12: 82 p. DOI: 10.1186/s12984-015-0074-9
- Gorgey A.S., Wade R., Sumrell R., Villadelgado L., Khalil R.E., Lavis T. Exoskeleton Training May Improve Level of Physical Activity After Spinal Cord Injury: A Case Series. Top Spinal Cord Inj Rehabil., 2017: 23: 245 - 255. DOI: 10.1310/sci16-00025]
- Hoffmann-A M.J. Indications of use: Esko [letter]. US Department of Health and Human Services. https://www.accessdata.fda.gov/cdrh_docs/pdf16/ K161443.pdf
- Hoffmann-A M.J. Indications for use: Indego [letter]. Department of Health and Human Services, 2016. https://www.accessdata.fda.gov/cdrh_docs/ pdf15/k152416.pdf
- Qin W., Bauman W.A., Cardozo C. Bone and muscle loss after spinal cord injury: organ interactions. Ann N Y Acad Sci., 2010: 1211: 66 - 84 DOI: 10.1111/j.1749-6632.2010.05806.x
- Garland D.E., Adkins R.H., Stewart C.A. Five-year longitudinal bone evaluations in individuals with chronic complete spinal cord injury. J Spinal Cord Med., 2008: 31: 543 - 550 DOI: 10.1080/10790268.2008.11753650
- Cirnigliaro C.M., Myslinski M.J., La Fountaine M.F., Kirshblum S.C., Forrest G.F., Bauman W.A.. Bone loss at the distal femur and proximal tibia in persons with spinal cord injury: imaging approaches, risk of fracture, and potential treatment options. Osteoporos Int., 2017: 28: 747 - 765 DOI: 10.1007/ s00198-016-3798-x
- Groah S.L., Schladen M., Pineda C.G., Hsieh C.H. Prevention of Pressure Ulcers Among People With Spinal Cord Injury: A Systematic Review. PM R., 2015: 7: 613 - 636 DOI: 10.1016/j.pmrj.2014.11.014
- Tamez D.J., Ugalde C.R., Kilicarslan A., Venkatakrishnan A., Soto R., Contreras-Vidal J.L. Real-time strap pressure sensor system for powered exoskeletons. Sensors (Basel), 2015: 15: 4550 - 4563 DOI: 10.3390/s150204550
- Evans N., Wingo B., Sasso E., Hicks A., Gorgey A.S., Harness E. Exercise Recommendations and Considerations for Persons With Spinal Cord Injury. Arch Phys Med Rehabil., 2015: 96: 1749 - 175 DOI: 10.1016/j.apmr.2015.02.005
- Tefertiller C., Hays K., Jones J., Jayaraman A., Hartigan C., Bushnik T., Forrest G. Initial outcomes from a multicenter study utilizing the Indego Powered Exoskeleton in spinal cord injury. Top Spinal Cord Inj Rehabil., 2018: 24(1): 78 - 85 DOI: 10.1310/sci17-00014
- Dijkers M.P., Akers K.G., Dieffenbach S., Galen S.S. Systematic Reviews of Clinical Benefits of Exoskeleton Use for Gait and Mobility in Neurologic Disorders: A Tertiary Study. Arch Phys Med Rehabil., 2019 pii: S0003-9993(19)30152-2. DOI: 10.1016/j.apmr.2019.01.025
- Liberati A., Altman D.G., Tetzlaff J., Mulrow C., G0tzsche P.C., loannidis J.P., Clarke M., Devereaux PJ., Kleijnen J., Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med., 2009: 151(4): 65 - 94 DOI: 10.7326/0003-4819-151-4-200908180-00136
- Esquenazi A., Talaty M., Packel A., Saulino M. The Rewalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil., 2012: 91: 911 - 921 DOI: 10.1097/PHM.0b013e318269d9a3.
- Benson I., Hart K., Tussler D., van Middendorp J.J. Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study. Clin Rehabil., 2016: 30(1): 73 - 84 DOI: 10.1177/0269215515575166
- Asselin P., Knezevic S., Kornfeld S., Cirnigliaro C., Agranova-Breyter I., Bauman W.A., Spungen A.M. Heart rate and oxygen demand of powered exoskeleton-assisted walking in persons with paraplegia. J Rehabil Res Dev., 2015: (52): 147 - 158 DOI: 10.1682/JRRD.2014.02.0060
- Arazpour M., Bani M.A., Hutchins S.W., Jones R.K. The physiological cost index of walking with mechanical and powered gait orthosis in patients with spinal cord injury. Spinal Cord., 2013: 51(5): 356 - 359 DOI: 10.1038/sc.2012.162
- Yang A., Asselin P., Knezevic S., Kornfeld S., Spungen A.M. Assessment of in-hospital walking velocity and level of assistance in a powered exoskeleton in persons with spinal cord injury. Top Spinal Cord Inj Rehabil., 2015: 21(2): 100 - 109 DOI: 10.1310/sci2102-100
- Zeilig G., Weingarden H., Zwecker M., Dudkiewicz I., Bloch A., Esquenazi A. Safety and tolerance of the ReWalk exoskeleton suit for ambulation by people with complete spinal cord injury: a pilot study. J Spinal Cord Med., 2012: 35(2): 96 - 101 DOI: 10.1179/2045772312Y.0000000003
- Talaty M., Esquenazi A., Briceno J.E. Differentiating ability in users of the ReWalk TM powered exoskeleton: an analysis of walking kinematics. IEEE Int Conf Rehabil Robot., 2013: 1 - 5 Seattle, WA. DOI: 10.1109/ICORR.2013. 6650469
- Spungen A.M., Asselin P.K., Fineberg D.B., Kornfeld S.D., Harel N.Y. Exoskeletal-assisted walking for persons with motor-complete paraplegia. Paper presented at: NATO Science and Technology Organization, Milan, Italy, 2013: 15 - 17
- Geigle P.R., Kallins M. Exoskeleton-Assisted Walking for People With Spinal Cord Injury. Arch Phys Med Rehabil., 2017: 98(7): 1493 - 1495 DOI: 10.1016/j. apmr.2016.12.002
- Asselin P., Fineberg D., Harel N.Y., et al. One-month follow-up for robotic exoskeletal walking measurements. J Spinal Cord Med., 201: 36: 537 - 538
- Farris R.J., Quintero H.A., Murray S.A., Ha K.H., Hartigan C., Goldfarb M. A preliminary assessment of legged mobility provided by a lower limb exoskeleton for persons with paraplegia. IEEE Trans Neural Syst Rehabil Eng., 2014: 22: 482 - 490 DOI: 10.1109/TNSRE.2013.2268320
- Neuhaus P.D., Noorden J.H., Craig T.J., Torres T., Kirschbaum J., Pratt J.E. Design and evaluation of Mina: a robotic orthosis for paraplegics. IEEE Int Conf Rehabil Robot. Zurich, 2011 DOI:10.1109/ICORR.2011.5975468
- Lam T., Wirz M., Lunenburger L., Dietz V. Swing phase resistance enhances flexor muscle activity during treadmill locomotion in incomplete spinal cord injury. Neurorehabil. Neural Repair., 2008: 22: 438 - 446 DOI:10.1177/1545968308315595
- Ekelem A., Murray S., Goldfarb M. Preliminary assessment of variable geometry stair ascent and descent with a powered lower limb orthosis for individuals with paraplegia. Conf Proc IEEE Eng Med Biol Soc., 2015: 4671 - 4674 DOI: 10.1109/EMBC.2015.7319436
- Lemay V., Routhier F., Noreau L., Phang S.H., Ginis K.A. Relationships between wheelchair skills, wheelchair mobility and level of injury in individuals with spinal cord injury. Spinal Cord., 2012: 50: 37 - 41 DOI: 10.1038/sc.2011.98
- Stampacchia G., Rustici A., Bigazzi S., Gerini A., Tombini T., Mazzoleni S. Walking with a powered robotic exoskeleton: Subjective experience, spasticity and pain in spinal cord injured persons. NeuroRehabilitation., 2016: 39(2): 277 - 283 DOI: 10.3233/NRE-161358
- Gorgey A.S., Wade R., Sumrell R., Villadelgado L., Khalil R.E., Lavis T. Exoskeleton Training May Improve Level of Physical Activity After Spinal Cord Injury: A Case Series. Top Spinal Cord Inj Rehabil., 2017: 23: 245 - 255 DOI: 10.1310/sci16-00025
- Evans N., Hartigan C., Kandilakis C., Pharo E., Clesson I. Acute cardiorespiratory and metabolic responses during exoskeleton-assisted walking overground among persons with chronic spinal cord injury. Top Spinal Cord Inj Rehabil., 2015: 21(2): 122 - 132 DOI: 10.1310/sci2102-122
- Aach M., Cruciger O., Sczesny-Kaiser M., Hoffken O., Meindl R.C., Tegenthoff M., Schwenkreis P., Sankai Y., Schildhauer T.A. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Spine J., 2014: 14(12): 2847 - 2853 DOI: 10.1016/j.spinee.2014.03.042
- Cruciger O., Schildhauer T.A., Meindl R.C., Tegenthoff M., Schwenkreis P., Citak M., Aach M. Impact of locomotion training with a neurologic controlled hybrid assistive limb (HAL) exoskeleton on neuropathic pain and health related quality of life (HRQoL) in chronic SCI: a case study. Disabil Rehabil Assist Technol., 2016: 11(6): 529 - 534 DOI: 10.3109/17483107.2014.981875
- Katzmarzyk P.T., Church T.S., Craig C.L., Bouchard C. Sitting time and mortality from all causes, cardiovascular disease, and cancer. Med Sci Sports Exerc., 2009: 41: 998 - 1005 DOI: 10.1249/MSS.0b013e3181930355
- Dolbow D.R., Gorgey A.S., Daniels J.A., Adler R.A., Moore J.R., Gater D.R. Jr. The effects of spinal cord injury and exercise on bone mass: a literature review. NeuroRehabilitation., 2011: 29(3): 261 - 269 DOI: 10.3233/NRE-2011-0702
- Gorgey A.S., Gater D.R. Jr. Prevalence of Obesity After Spinal Cord Injury. Top Spinal Cord Inj Rehabil., 2007: 12: 1 - 7 DOI: 10.1310/sci1204-1
- Buchholz A.C., Martin Ginis K.A., Bray S.R., Craven B.C., Hicks A.L., Hayes K.C., Latimer A.E., McColl M.A., Potter P.J., Wolfe D.L. Greater daily leisure time physical activity is associated with lower chronic disease risk in adults with spinal cord injury. Appl Physiol Nutr Metab., 2009: 34: 640 - 647 DOI: 10.1139/H09-050
- Ginis M. K.A., van der Scheer J.W., Latimer-Cheung A.E., Barrow A., Bourne C., Carruthers P., Bernardi M., Ditor D.S., Gaudet S., de Groot S., Hayes K.C., Hicks A.L., Leicht C.A., Lexell J., Macaluso S., Manns P.J., McBride C.B., Noonan V.K., Pomerleau P., Rimmer J.H., Shaw R.B., Smith B., Smith K.M., Steeves J.D., Tussler D., West C.R., Wolfe D.L, Goosey-Tolfrey V.L. Evidence-based scientific exercise guidelines for adults with spinal cord injury: an update and a new guideline. Spinal Cord., 2018: 56: 308 - 321 DOI: 10.1038/s41393-017-0017-3
- Gorgey A.S., Wade R., Sumrell R., Villadelgado L., Khalil R.E., Lavis T. Exoskeleton Training May Improve Level of Physical Activity After Spinal Cord Injury: A Case Series. Top Spinal Cord Inj Rehabil., 2017: 23: 245 - 255 DOI: 10.1310/sci16-00025
- Gorgey A.S., Gater D.R. Jr. Prevalence of Obesity After Spinal Cord Injury. Top Spinal Cord Inj Rehabil., 2007: 12: 1 - 7 DOI: 10.1310/sci1204-1
- Nightingale T.E., Walhin J.P., Thompson D., Bilzon J.L. Biomarkers of cardiometabolic health are associated with body composition characteristics but not physical activity in persons with spinal cord injury. J Spinal Cord Med., 2017: 1 - 10 DOI: 10.1080/10790268.2017.1368203
- Birch N., Graham J., Priestley T., Heywood C., Sakel M., Gall A., Nunn A., Signal N. Results of the first interim analysis of the RAPPER trial in patients with spinal cord injury: ambulation and functional exercise programs in the REX powered walking aid. J Neuroeng Rehabil., 2017: 14: 60 p. DOI: 10.1186/ s12984-017-0274-6
- Lerner Z.F., Damiano D.L., Bulea T.C. A lower-extremity exoskeleton improves knee extension in children with crouch gait from cerebral palsy. Sci Transl Med., 2017: 9 p. pii: eaam9145 DOI: 10.1126/scitranslmed.aam9145

The content is available under the Creative Commons Attribution 4.0 License.
©
This is an open article under the CC BY 4.0 license. Published by the National Medical Research Center for Rehabilitation and Balneology.