Issue 5-20, 2021
Review article
Neuroplasticity Mechanisms and Prospects for Personalized Rehabilitation Strategies in Patients with Motor and Cognitive Impairments
1 Kristina A. Shagaeva, 2,3
Artur S. Shagaev
1 A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russian Federation
2 Pirogov Russian National Research Medical University, Moscow, Russian Federation
3 Medical Center «DOCTOR», Pushchino, Russian Federation
ABSTRACT
AIM. To highlight the most important areas of research on the problems of rehabilitation after stroke and the prospects for the development of new rehabilitation strategies, taking into account individual characteristics. Neuroplastic outcomes of anemic infarctions are presented by multi-pattern positive processes of synaptogenesis, sprouting, synthesis of neuroprotective proteins, and destructive effects of stress plasticity inducing dystonic disturbances, deterioration of stabilometric parameters and locomotor gait mechanisms with support deterioration [1]. Thus, specialists in neurorehabilitation should know the basics of fundamental neurophysiological processes in the central nervous system, interhemispheric networks of the brain, and optimize rehabilitation programs, taking into account individualized recovery profiles [2]. One of the factors influencing recovery after a stroke is nervous reorganization, which is proportional to the amount of damage [3]. The processes of neuroplasticity are studied from the standpoint of returning to the pre-stroke recovery model (with minor injuries) – forming “optimal” plasticity and compensatory strategies of “destructive” plasticity (with extensive hemispheric injuries). Micro-RNA (miRNA) are understudied in the neuroprotective reaction to cerebral ischemia. Another important modulator of stroke outcomes is the brain-derived neurotrophic factor (BDNF). Processing of the defective BDNF synthesis when the amino acid valine is replaced by methionine (val-met) that occurs during allelic disorders is of outstanding interest.
CONCLUSION. Promising research areas for strategic approaches to rehabilitation after a stroke are the study of hemispheric introduction, miRNA and neuroprotection cascades; BDNF as an inducer of neuronal differentiation. Allelic BDNF polymorphisms induce lower recovery potential after stroke. Under certain environmental conditions motor learning can overcome the neuroplasticity deficit in the BDNF gene polymorphism. The studies have shown general patterns of positive effects of aerobic stimuli with enhanced BDNF secretion in the recovery of patients with cognitive and motor impairments; nevertheless, the onset period, intensity, duration and exercises rhythmicity have not been established in cerebral stroke. Future studies are likely to optimize rehabilitation profiles based on genetic characteristics.
KEYWORDS: physical activity, aerobic training, recovery, rehabilitation, stroke, neuroplasticity, neuroprotection, gene polymorphism, BDNF, Mi-RNA
FUNDING: The study had no sponsorship
CONFLICT OF INTEREST: The authors declare no apparent or potential conflicts of interest related to the publication of this article.
FOR CITATION: Shagaeva K.A., Shagaev A.S. Neuroplasticity Mechanisms and Prospects for Personalized Rehabilitation Strategies in Patients with Motor and Cognitive Impairments. Bulletin of Rehabilitation Medicine. 2021; 20 (5): 37-46. https://doi.org/10.38025/2078-1962-2021-20-5-37-46
FOR CORRESPONDENCE:
Artur S. Shagaev, e-mail: Shagart@bk.ru
References:
- Popova N.F., Shagayev A.S. Ispol’zovanie mnogokanal’noj programmnoj elektrostimulyacii dlya reabilitacii bol’nyh rasseyannym sklerozom [Use of multichannel programmed electrostimulation for the rehabilitation of patients with multiple sclerosis]. S.S. Korsakov Journal of Neurology and Psychiatry . 2009; 109(7-2): 142-147 (In Russ.).
- Ivanova G.E., Belkin A.A., Belyaev A.F., Bodrova R.A., Bujlova T.V., Mel’nikova E.V., Mishina I.E., Prokopenko S.V., Sarana A.M., Stahovskaya L.V., Suvorov A.Yu., SHamalov N.A., Shmonin A.A., Hasanova D.R., Cykunov M.B. O podgotovke kadrov v oblasti medicinskoj reabilitacii. Vrach po fizicheskoj i reabilitacionnoj medicine [About Preparation of Staff in the Field of Medical Rehabilitation. Doctor on Physical and Rehabilitation Medicine]. Bulletin of Rehabilitation Medicine. 2017; 2(78): 4-5 (In Russ.).
- Belova A.N., Grigor’yeva V.N., Sushin V.O., Belova Ye.M., Israyelyan Yu.A., Sheyko G.Ye. Anatomo-funktsional’nyye osobennosti kortikospinal’nykh traktov i ikh rol’ v vosstanovlenii dvigatel’nykh funktsiy posle povrezhdeniy golovnogo mozga [Anatomical and Functional Features of Corticospinal Tracts and Their Role in Restoration of Motor Functions after Brain Injury]. Bulletin of Rehabilitation Medicine. 2020; (1): 9-18 (In Russ.).
- Coleman E.R., Moudgal R., Lang K., Hyacinth H.I., Awosika O.O., Kissela B.M., Feng W. Early Rehabilitation After Stroke: a Narrative Review. Journal Current Atherosclerosis Reports. 2017; 19(12): 59 p. https://doi.org/10.1007/s11883-017-0686-6
- Damulin I.V, Yekusheva Ye.V. Insul’t i neyroplastichnost’ [Stroke and Neuroplasticity]. S.S. Korsakov Journal of Neurology and Psychiatry . 2014; 114(8): 105-110. https://doi.org/10.17116/jnevro2014114121136-142 (In Russ.).
- Dancause N., Nudo R.J. Shaping plasticity to enhance recovery after injury. Progress in Brain Research . 2011; (192): 273-295. https://doi.org/10.1016/B978-0-444-53355-5.00015-4
- Dancause N. Vicarious function of remote cortex following stroke: recent evidence from human and animal studies. The Neuroscientist. 2006; 12(6): 489-499. https://doi.org/10.1177/1073858406292782
- Murphy T.H., Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nature Reviews Neuroscience . 2009; 10(12): 861-872. https://doi.org/10.1038/nrn2735
- Borodulina I.V., Badalov N.G., Muhina A.A., Gushcha A.O. Ocenka effektivnosti kompleksnogo lecheniya s primeneniem ritmicheskoj transkranial’noj magnitnoj stimulyacii i obshchih gidro-gal’vanicheskih vann u pacientov s poyasnichno-krestcovoj radikulopatiej [Assessment of the Efficiency ofComplex Treatment with the Application of Rhythmic Transcranial Magnetic Stimulation and General Hydrohalvanical Bathtubs in Patients with Lumbar and Cross-Radiculopathy]. Bulletin of Rehabilitation Medicine . 2019; 1(89): 33-41 (In Russ.).
- Belova A.N., Shejko G. E., Shaklunova N.V., Israelyan Yu.A. Medicinskaya reabilitaciya pri detskom cerebral’nom paraliche: primenenie Mezhdunarodnoj klassifikacii funkcionirovaniya, ogranichenij zhiznedeyatel’nosti i zdorov’ya detej i podrostkov [Medical Rehabilitation of Children with Cerebral Palsy: Application of the International Classification of Functioning, Disability and Health (Children and Youth Version)]. Bulletin of Rehabilitation Medicine . 2019; 1(89): 2-9 (In Russ.).
- Dijkhuizen R.M., Ren J., Mandeville J.B., Wu O., Ozdag F.M., Moskowitz M.A., Rosen B.R., Finklestein S.P. Functional magnetic resonance imaging of reorganization in rat brain after stroke. Highlights newsletter Procedining of the National Academy of Sciences USA. 2001; 98(22): 12766-71. https://doi.org/10.1073/pnas.231235598
- Cramer S.C. Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Annals of Neurology. 2008; 63(3): 272-287. https://doi.org/10.1002/ana.21393
- Schwerin S., Dewald J.P., Haztl M., Jovanovich S., Nickeas M., MacKinnon C. Ipsilateral versus contralateral cortical motor projections to a shoulder adductor in chronic hemiparetic stroke: implications for the expression of arm synergies. Experimental Brain Research. 2008; 185(3): 509-519. https://doi.org/10.1007/s00221-007-1169-8
- Jorgensen H.S., Nakayama H., Raaschou H.O., Vive-Larsen J., Stoier M., Olsen T.S. Outcome and time course of recovery in stroke. Part II: time course of recovery. The Copenhagen stroke study. Archives of Physical Medicine and Rehabilitation. 1995; 76(5): 406-412 https://doi.org/10.1016/S0003-9993(95)80568-0
- Johnston M.V. Plasticity in the developing brain: implications for rehabilitation. Developmental Disabilities Research Reviews. Special Issue: Acquired Central Nervous System Injuries. Wiley online library. 2009; 15(2): 94-101. https://doi.org/10.1002/ddrr.64
- Hosp J.A., Luft A.R. Cortical plasticity during motor learning and recovery after ischemic stroke. Neural Plasticity. 2011; (2011): 871296. https://doi.org/10.1155/2011/871296
- Flor H. Maladaptive plasticity, memory for pain and phantom limb pain: review and suggestions for new therapies. Expert Review of Neurotherapeutics. 2008; 8(5): 809-818. https://doi.org/10.1586/14737175.8.5.809
- Quartarone A., Siebner H.R., Rothwell J.C. Task-specific hand dystonia: can too much plasticity be bad for you? Journal Trends in Neurosciences . 2006; 29(4): 192-199. https://doi.org/10.1016/j.tins.2006.02.007
- Kerr A.L., Cheng S.Y., Jones T.A. Experience-dependent neural plasticity in the adult damaged brain. Journal of Communication Disorders . 2011; 44(5): 538-548. https://doi.org/10.1016/j.jcomdis.2011.04.011
- Rijntjes M. Mechanisms of recovery in stroke patients with hemiparesis or aphasia: new insights, old questions and the meaning of therapies. Journal Current Opinion in Neurology . 2006; 19(1): 76-83. https://doi.org/10.1097/01.wco.0000203886.28068.38
- Takeuchi N., Tada T., Chuma T., Matsuo Y., Ikoma K. Disinhibition of the premotor cortex contributes to a maladaptive change in the affected hand after stroke. Stroke . 2007; 38(5): 1551-1556. https://doi.org/10.1161/STROKEAHA.106.470187
- Kim J.M., Stewart R., Park M.S., Kang H.J., Kim S.W., Shin I.S. et al. Associations of BDNF genotype and promoter methylation with acute and long-term stroke outcomes in an East Asian cohort. Plos One. 2012; 7(12): e51280. https://doi.org/10.1371/journal.pone.0051280
- Levin M.F., Kleim J.A., Wolf S.L. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabilitation and Neural Repair. 2009; 23(4): 313-319. https://doi.org/10.1177/1545968308328727
- Gusev Ye.I., Gekht A.B., Bogolepova A.N., Alferova V.V. The principles of rehabilitation and pharmacotherapy of patients with stroke in the recovery period. All-Russian Congress of Neurologists, 8th [Printsipy reabilitatsii i farmakoterapii bol’nykh i insul’tom v vosstanovitel’nom periode. Vserossiyskiy s”yezd nevrologov, 8-y: Materialy]. 2001: 220 p. (In Russ.).
- Batysheva T.T. Sistema meditsinskoy reabilitatsii dvigatel’nykh narusheniy u nevrologicheskikh bol’nykh v ambulatornykh usloviyakh. Dokt, Diss. [System of medical rehabilitation of movement disorders in neurological patients on an outpatient basis. Doct. Diss.]. Moscow. 2005: 32-33 (In Russ.).
- Detskij cerebral’nyj paralich (DCP). Klinicheskie rekomendacii [Cerebral palsy. Clinical guidelines]. Bulletin of Rehabilitation Medicine. 2017; 3(79): 91-114 (In Russ.).
- Laurin, D., Verreault R., Lindsay J., MacPherson K., Rockwood K. Physical activity and risk of cognitive impairment and dementia in elderly persons. JAMA. 2001; 58(3): 498-504. https://doi.org/10.1001/archneur.58.3.498
- Roby-Brami A., Feydy A., Combeaud M., Biryukova E.V., Bussel B., Levin M.F. Motor compensation and recovery for reaching in stroke patients. Acta Neurologica Scandinavica. 2003; 107(5): 369-381. https://doi.org/10.1034/j.1600-0404.2003.00021.x
- Warraich Z., Kleim J.A. Neural plasticity: the biological substrate for neurorehabilitation. PM&R: The Journal of Injury, Function and Rehabilitation . 2010; (2): 208-219. https://doi.org/10.1016/j.pmrj.2010.10.016
- Black I.B. Trophic regulation of synaptic plasticity. Journal of Neurobiology . 1999; 41(1): 108-118. https://doi.org/10.1002/(sici)1097-4695(199910)41:1<108::aid-neu14>3.0.co;2-u
- Poo M.M. Neurotrophins as synaptic modulators. Nature Reviews Neuroscience . 2001; 2(1): 24-32. https://doi.org/10.1038/35049004
- Simon R.P, Meller R., Zhou A., Henshall D. Can genes modify stroke outcome and by what mechanisms? Stroke . 2012; 43(1): 286-91. https://doi.org/10.1161/STROKEAHA.111.622225
- Stapels M., Piper C., Yang T., Li M., Stowell C., Xiong Z.G., Saugstad J., Simon R.P., Geromanos S., Langridge J., Lan J.Q., Zhou A. Polycomb group proteins as epigenetic mediators of neuroprotection in ischemic tolerance. Science Signaling. 2010; 3(111): 15 p. https://doi.org/10.1126/scisignal.2000502
- Yasui D.H., Peddada S., Bieda M.C., Vallero R.O., Hogart A., Nagarajan R.P., Thatcher K.N., Farnham P.J., Lasalle J.M. Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. Proceedings of the National Academy of Sciences. 2007; 104(49): 19416-19421. https://doi.org/10.1073/pnas.0707442104
- Mang C.S., Campbell K.L., Ross C.J., Boyd L.A. Promoting neuroplasticity for motor rehabilitation after stroke: considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor. Physical Therapy . 2013; 93(12): 1707-1716. https://doi.org/10.2522/ptj.20130053
- Gorski J.A., Zeiler S.R., Tamowski S., Jones K.R. Brain-derived neurotrophic factor is required for the maintenance of cortical dendrites. The Journal of Neuroscience. 2003; 23(17): 6856-6865. https://doi.org/10.1523/JNEUROSCI.23-17-06856.2003
- Lu B. BDNF and activity-dependent synaptic modulation. Learning&Memory . 2003; 10(2): 86-98. https://doi.org/10.1101/lm.54603
- Ernfors P., Ibá ñez C.F., Ebendal T., Olson L., Persson H. Molecular cloning and neurotrophic activities of a protein with structural similarities to nerve growth factor: developmental and topographical expression in the brain. Proceedings of the National Academy of Sciences . 1990; 87(14): 5454-5458. https://doi.org/10.1073/pnas.87.14.5454
- Hohn A., Leibrock J., Bailey K., Barde Y.A. Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature . 1990; 344(6264): 339-341. https://doi.org/10.1038/344339a0
- Lu B., Pang P.T., Woo N.H. The yin and yang of neurotrophin action. Nature Reviews Neuroscience . 2005; 6(8): 603-614. https://doi.org/10.1038/nrn1726
- Hariri A.R., Goldberg T.E., Mattay V.S., Kolachana B.S., Callicott J.H., Egan M.F., Weinberger D.R. Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. The Journal of Neuroscience. 2003; (23): 6690-6694. https://doi.org/10.1523/JNEUROSCI.23-17-06690.2003
- Xu B., Zang K., Ruff N.L., Zhang Y.A., McConnell S.K., Stryker M.P., Reichardt L.F. Cortical degeneration in the absence of neurotrophin signaling: dendritic retraction and neuronal loss after removal of the receptor TrkB. Neuron . 2000; 26(1): 233-245. https://doi.org/10.1016/s0896-6273(00)81153-8
- Chen Z.Y., Patel P.D., Sant G., Meng C.X., Teng K.K., Hempstead B.L., Lee F.S. Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. The Journal of Neuroscience. 2004; 24(18): 4401-4411. https://doi.org/10.1523/JNEUROSCI.0348-04.2004
- Mirowska-Guzel D., Gromadzka G., Czlonkowski A., Czlonkowska A. BDNF -270 C>T polymorphisms might be associated with stroke type and BDNF - 196 G>A corresponds to early neurological deficit in hemorrhagic stroke. Journal of Neuroimmunology . 2012; (249): 71-75. https://doi.org/10.1016/j.jneuroim.2012.04.011
- Siironen J., Juvela S., Kanarek K., Vilkki J., Hernesniemi J., Lappalainen J. The Met allele of the BDNF Val66Met polymorphism predicts poor outcome among survivors of aneurysmal subarachnoid hemorrhage. Stroke . 2007; (38): 2858-2860. https://doi.org/10.1161/STROKEAHA.107.485441
- Knaepen K., Goekint M., Heyman E. M., Meeusen R. Neuroplasticity – exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sports Medicine. 2010; 40(9): 765-801. https://doi.org/10.2165/11534530-000000000-00000
- Pezawas L., Verchinski B.A., Mattay V.S., Callicott J.H., Kolachana B.S., Straub R.E., Egan M.F., Meyer-Lindenberg A., Weinberger D.R. The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. JNeurosci . 2004; 24(45): 10099-10102. https://doi.org/10.1523/JNEUROSCI.2680-04.2004
- Vaynman S., Ying Z., Gomez-Pinilla F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. European Journal of Neuroscience. 2004; (20): 2580-2590. https://doi.org/10.1111/j.1460-9568.2004.03720.x
- Egan M.F., Kojima M., Callicott J.H., Goldberg T.E., Kolachana B.S., Bertolino A., Zaitsev E., Gold B., Goldman D., Dean M., Lu B., Weinberger D.R. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003; 112(2): 257-269. https://doi.org/10.1016/S0092-8674(03)00035-7
- Ho B., Milev P., O’Leary D.S., Librant A., Andreasen N.C., Wassink T.H. Cognitive and magnetic resonance imaging brain morphometric correlates of brain-derived neurotrophic factor Val66Met gene polymorphism in patients with schizophrenia and healthy volunteers. JAMA. 2006; (63): 731-740. https://doi.org/10.1001/archpsyc.63.7.731
- Erickson K.I., Miller D.L., Roecklein K.A. The aging hippocampus: Interactions between exercise, depression, and BDNF. The Neuroscientist. 2012; 18(1): 82-97. https://doi.org/10.1177/1073858410397054
- Nagel I.E., Chicherio C., Li S.C., von Oertzen T., Sander T., Villringer A., Heekeren H.R., Bäckman L., Lindenberger U. Human aging magnifies genetic effects on executive functioning and working memory. Frontiers in Human Neuroscience. 2008; (2): 1 p. https://doi.org/10.3389/neuro.09.001.2008
- Kluding P.M., Tseng B.Y., Billinger S.A. Exercise and executive function in individuals with chronic stroke: a pilot study. Journal of Neurologic Physical Therapy. 2011; 35(1): 11-17. https://doi.org/10.1097/NPT.0b013e318208ee6c
- Lambourne K., Tomporowski P. The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain Research . 2010; (1341): 12-24. https://doi.org/10.1016/j.brainres.2010.03.091
- Rasmussen P., Brassard P., Adser H., Pedersen MV., Leick L., Hart E., Secher N.H., Pedersen B.K., Pilegaard H. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Experimental Physiology . 2009; 94(10): 1062-1069. https://doi.org/10.1113/expphysiol.2009.048512
- Cotman C.W., Berchtold N.C. Exercise: a behavioral intervention to enhance brain health and plasticity. Cell. 2002; (25): 295-301. https://doi.org/10.1016/S0166-2236(02)02143-4
- Cotman C.W., Berchtold N.C., Christie L.A. Exercise builds brain health: key roles of growth factor cascades and inflammation. Cell. 2007; (30): 464-472. https://doi.org/10.1016/j.tins.2007.06.011
- Kleim J.A., Cooper N.R., VandenBerg P.M. Exercise induces angiogenesis but does not alter movement representations within rat motor cortex. Brain Research . 2002; (934): 1-6. https://doi.org/10.1016/S0006-8993(02)02239-4
- Ivey F.M., Hafer-Macko C.E., Macko R.F. Exercise rehabilitation after stroke. Neurotherapeutics. 2006; 3(4): 439-450. https://doi.org/10.1016/j.nurx.2006.07.011
- Studenski S., Duncan P.W., Perera S., Reker D., Lai S.M., Richards L. Daily functioning and quality of life in a randomized controlled trial of exercise therapy in subacute stroke survivors. Stroke . 2005; 36(8): 1764-1770. https://doi.org/10.1161/01.STR.0000174192.87887.70

The content is available under the Creative Commons Attribution 4.0 License.
©
This is an open article under the CC BY 4.0 license. Published by the National Medical Research Center for Rehabilitation and Balneology.