Issue 1-21, 2022
Original article
Review of the Elemental Status in Blood Serum in Patients with Ischemic Stroke
1 Aksana N. Mazilina, 1,3
Anatoliy V. Skalny, 2,4
Anatoliy D. Fesyun, 2,3
Maxim Yu. Yakovlev, 3
Sergey A. Savko, 3
Evegeniya D. Namiot
1 Peoples’ Friendship University of Russia, Moscow, Russian Federation
2 National Medical Research Center of Rehabilitation and Balneology, Moscow, Russian Federation
3 I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
4 Moscow State University of Food Production, Moscow, Russian Federation
ABSTRACT
The study of the elemental status in the modern paradigm of medical diagnostics occupies an increasingly large niche due to thepossible use of trace elements as possible predictors of cerebrovascular pathologies. Moreover, the great importance of the elementalcomponent in the main enzymatic systems of metabolism allows us to consider them also as a therapeutic target. There are manymechanisms in the pathophysiology of stroke development, each of which, in one way or another, is mediated through the interactionof regulatory proteins with trace elements as cofactors. Therefore, it is necessary to pay close attention to elemental homeostasis inthe focus of ischemic pathologies.Aim. Systematization of the known pathogenetic eff ects of the most metabolic homeostasis important elements on the course of stroke,both contributing factors to earlier rehabilitation and minimal neurological defi cit after the ischemic event itself, and factors aggravatingthe recovery process and leading to serious neurological consequences. This pursues not only a prognostic goal to determine theseverity of ischemia or to identify risk groups with certain shifts in elemental constants, but also the therapeutic one — to replace thefalling functions of the dropping metabolic agents, as happens with the elements involved in antioxidant systems. It is also necessaryto develop a methodology for stopping the excess of nerve cells mediating excitotoxicity with calcium ions, which closes the viciouscircle of vascular necrosis with additional destruction of the nervous tissue.Conclusion. The conclusions that we can summarize quite convincingly indicate a signifi cant contribution of the elemental status tothe pathogenesis of ischemic stroke. Dysregulation of the elemental component can force the damaging eff ect of ischemia on braincells. At the same time, many elements show a surplus during an ischemic event: Li, I, Mn, Zn, As, Se, Pb, Sr, Ni, however, not all of thepresented elements negatively aff ect the course of stroke, since an increase in the level of some metals may be compensatory in nature,and for their further applicability as diagnostic and therapeutic agents, similar analytics are required.
KEYWORDS: stroke, trace elements, elementary homeostasis, ischemia
FOR CITATION: Mazilina A.N., Skalny A.V., Fesyun A.D., Yakovlev M.Yu., Savko S.A., Namiot D.E. Review of the Elemental Status in Blood Serum in Patients with Ischemic Stroke. Bulletin of Rehabilitation Medicine. 2022; 21 (1):104-113. https://doi.org/10.38025/2078-1962-2022-21-1-104-113
References:
- Feigin V. L. et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Dis- ease Study 2019. The Lancet Neurology. 2021; 20(10): 795–820.
- Béjot Y, Daubail B, Giroud M. Epidemiology of stroke and transient ischemic attacks: Current knowledge and perspectives. Revue Neurologique. 2016; 172(1): 59–68. https://doi.org/10.1016/j.neurol.2015.07.013
- Skalny A. V., Skalnaya M. G., Klimenko L. L., Mazilina A. N., Tinkov A. A. Selen pri ishemicheskom insul’te [Selenium in ischemic stroke]. Selenium.
- Springer. 2018: 211–230. https://doi.org/10.1007/978-3-319-95390-8_11 (In Russ.).
- Lo E. H., Moskowitz M. A., Jacobs T. P., Exciting, radical, suicidal: how brain cells die after stroke. Stroke. 2005; 36(2): 189–192. https://doi.org/10.1161/01.STR.0000153069.96296.fd
- Lai T. W., Zhang S., Wang Y. T. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Progress in Neurobiology. 2014; (115): 157– 88. https://doi.org/10.1016/j.pneurobio.2013.11.006
- Dimopoulou I., Kouyialis A., Orfanos, Armaganidis, Tzanela M., Thalassinos N., Tsagarakis S. Endocrine alterations in critically III patients with stroke during the early recovery period. Neurocritical Care. 2005; 3(3): 224–229.
- Skalny A. V., Klimenko L. L., Turna A.A, Budanova M. N., Baskakov I. S., Savostina M. S., Mazilina A. N., Deyev A. I., Skalnaya M. G., Tinkov A. A. Syvoro- tochnye mikroelementy, vzaimosvyazannye s gormonal’nyj disbalansom u muzhchin pri ostrom ishemicheskom insul’te [Serum trace elements are interrelated with hormonal imbalance in men with acute ischemic stroke]. Journal of Trace Elements in Medicine and Biology. 2017; (43): 142– 147 (In Russ.).
- Gönüllü H., Karadaş S., Milanlioğlu A., Gönüllü E., Celal K., Demir H. Levels of serum trace elements in ischemic stroke patients. Journal of Experi- mental and Clinical Medicine. 2013; 30(4): 301–304. 9. Shadman J., Sadeghian N., Moradi A., Bohlooli S., Panah H. Magnesium sulfate protects blood–brain barrier integrity and reduces brain edema after acute ischemic stroke in rats. Metabolic Brain Disease. 2019; 34(4): 1221–1229.
- Larsson S. C., Orsini N., Wolk A. Dietary magnesium intake and risk of stroke: a meta-analysis of prospective studies. The American Journal of Clin- ical Nutrition. 2012; 95(2): 362–366.
- Tehrani S.S, Khatami S. H., Saadat P., Sarfi M., Ahangar A. A., Daroie R., Firouzjahi A., Maniati M. Association of serum magnesium levels with risk factors, severity and prognosis in ischemic and hemorrhagic stroke patients. Caspian Journal of Internal Medicine. 2020; 11(1): 83 p. https://doi.org/10.22088/cjim.11.1.83
- Gu D., He J., Wu X., Duan X., Whelton P. Eff ect of potassium supplementation on blood pressure in Chinese: a randomized, placebo-c ontrolled trial.
- Journal of Hypertension. 2001; 19(7): 1325–1331.
- D’Elia L., Barba G., Cappuccio F. P., Strazzullo P. Potassium intake, stroke, and cardiovascular disease a meta-analysis of prospective studies. Journal of the American College of Cardiology. 2011; (57): 1210–9.
- Klimenko L.L, Skal’nyj A.V., Tutna A. A., Budanova M. N., Baskakov I. S., Savostina M. S., Mazilina A. N., Deev A. I., Skal’naya M.G., Tin’kov A. A. Syvoro- tochnye elektrolity, associirovannye s nejronal’nym povrezhdeniem u pacientov s tranzitornoj ishemicheskoj atakoj i insul’tom [Serum electrolytes associated with neuronal damage in patients with transient ischaemic attack and stroke]. Trace Elements and Electrolytes. 2017; 34(1): 29–33 (In Russ.).
- Wannamethee G., Whincup P. H. Shaper A. G., Lever A. F. Serum sodium concentration and risk of stroke in middle-aged males. Journal of Hyper- tension. 1994; 12(8): 971–9.
- Saenger A. K., Christenson R. H. Stroke biomarkers: progress and challenges for diagnosis, prognosis, diff erentiation, and treatment. Clinical Chemistry. 2010; 56(1): 21–33. https://doi.org/10.1373/clinchem.2009.133801
- Li Y. V., Zhang J. H. Metal ions in stroke pathophysiology. Metal ion in stroke. Springer. 2012: 1–12.
- Mitra J., Vasquez V., Hegde P., Boldogh I., Mitra S., Kent T., Rao K., Hegde M. Revisiting metal toxicity in neurodegenerative diseases and stroke: therapeutic potential. Neurological Research and Therapy. 2014; 1(2).
- Lee S., Jouihan H. A., Cooksey R. C., Jones D., Kim H. J., Winge D. R., McClain D. A. Manganese supplementation protects against diet-induced diabe- tes in wild type mice by enhancing insulin secretion. Endocrinology. 2013; 154(3): 1029–1038. https://doi.org/10.1210/en.2012-1445
- Mohammadianinejad S. E., Majdinasab N., Sajedi S. A., Abdollahi F., Moqaddam M. M., Sadr F. The eff ect of lithium in post-stroke mo- tor recovery: a double- blind, placebo- controlled, randomized clinical trial. Clinical Neuropharmacology. 2014; 37(3): 73–78. https://doi.org/10.1097/WNF.0000000000000028
- Lazarus J. H. Lithium and thyroid. Best Practice & Research: Clinical Endocrinology & Metabolism. 2009; 23(6): 723–733.
- Mukherjee B., Patra B., Mahapatra S., Banerjee P., Tiwari A., Chatterjee M. Vanadium — an element of atypical biological signifi cance. Toxicology Letters. 2004; 150(2): 135–143.
- Kroes R., Den Tonkelaar E.M, Minderhoud A, Speijers G, Vonk- Visser D, Berkvens J.M, Van Esch G. J. Short-term toxicity of strontium chloride in rats.
- Toxicology. 1977; 7(1): 11–21.
- Lai M., Wang D., Lin Z., Zhang Y. Small molecule copper and its relative metabolites in serum of cerebral ischemic stroke patients. Journal of Stroke and Cerebrovascular Diseases. 2016; 25(1): 214–219.
- Mirończuk A., Kapica- Topczewska K., Socha K., Soroczyńska J., Jamiołkowski J., Kułakowska A., Kochanowicz J. Selenium, Copper, Zinc Concen- trations and Cu/Zn, Cu/Se Molar Ratios in the serum of patients with acute ischemic stroke in Northeastern Poland — a new insight into stroke pathophysiology. Nutrients. 2021; 13(7): 2139 p. https://doi.org/10.3390/nu13072139
- Dubinina E. E., SHCHedrina L.V., Neznanov N. G., Zalutskaya N. M., Zaharchenko D. V. Okislitel’nyj stress i ego vliyanie na funkcional’nuyu aktivnost’ kletok pri bolezni Al’cgejmera [Oxidative stress and its eff ect on cells functional activity of Alzheimer’s disease]. Biomedical Chemistry. 2015; 61(1): 57–69 (In Russ.).
- Farina M., Avila D. S., da Rocha J., Aschner M. Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neuro- chemistry International. 2013; 62(5): 575–594.
- Kodali P., Chitta K. R., Figueroa J., Caruso J., Adeoye O., Detection of metals and metalloproteins in the plasma of stroke patients by mass spec- trome- try methods. Metallomics. 2012; 4(10): 1077–1087.
- McNeely M.D., Sunderman F. W., Nechay M. W., Levine H. Abnormal concen- trations of nickel in serum in cases of myocardial infarction, stroke, burns, he- patic cirrhosis, and uremia. Clinical Chemistry. 1971; 17(11): 1123–1128.
- Agarwal S., Zaman T., Tuzcu E. M., Kapadia S. R. Heavy metals and cardiovas- cular disease: results from the national health and nutrition examina- tion survey (NHANES) 1999–2006. Angiology. 2011; 62(5): 422–429.
- Dzondo- Gadet M., Mayap- Nzietchueng R., Hess K., Nabet P., Belleville F., Dousset B. Action of boron at the molecular level. Biological Trace Ele- ment Research. 2002; 85(1): 23–33.
- Cavusoglu E., Eng C., Chopra V., Ruwende C., Yanamadala S., Clark L. T., Marmur J. D. Usefulness of the serum complement component C4 as a pre- dictor of stroke in patients with known or suspected coronary artery disease referred for coronary angiography. The American Journal of Cardi- ology. 2007; 100(2): 164–168.
- Korbecki J., Baranowska- Bosiacka I., Gutowska I., Chlubek D. Biochemical and medical importance of vanadium compounds. Acta Biochimica Polonica. 2002; 59(2): 195 p.
- Zwolak I., Zaporowska H. Eff ects of zinc and selenium pretreatment on vanadium- induced cytotoxicity in vitro. Trace Elements & Electrolytes. 2010; 27(1): 20–28.
- Weissman J. D., Khunteev G. A., Heath R., Dambinova S. A. NR2 antibodies: risk assessment of transient ischemic attack (TIA)/stroke in patients with history of isolated and multiple cerebrovascular events. Journal of the Neurological Sciences. 2011; 300(1–2): 97–102. https://doi.org/10.1016/j.jns.2010.09.023
- Hatfi eld D. L., Tsuji P. A., Carlson B. A., Gladyshev V. N. Selenium and selenocysteine: roles in cancer, health, and development. Trends in Biochemi- cal Sciences. 2014; 39(3): 112–20. https://doi.org/10.1016/j.tibs.2013.12.007
- Schweizer U., Bräuer A. U., Köhrle J., Nitsch R., Savaskan N. E. Selenium and brain function: a poorly recognized liaison. Brain Research Reviews. 2004; 45(3): 164–78. https://doi.org/10.1016/j.brainresrev.2004.03.004
- Oliveira C. S., Piccoli B. C., Aschner M., Rocha J. B. Chemical speciation of selenium and mercury as determinant of their neurotoxicity. Neurotoxicity of metals. Cham: Springer. 2017: 53–83.
- Bräuer A. U., Savaskan N. Ε. Molecular actions of selenium in the brain: neuroprotective mechanisms of an essential trace element. Reviews in the Neurosciences. 2004; 15(1): 19–32. https://doi.org/10.1515/REVNEURO.2004.15.1.19
- Schomburg L. Selenium, selenoproteins and the thyroid gland: interactions in health and disease. Nature Reviews Endocrinology. 2012; (8): 160– 171. https://doi.org/10.1038/nrendo.2011.174
- Chang C. Y., Lai Y. C., Cheng T. J., Lau M. T., Hu M. L. Plasma levels of antioxidant vitamins, selenium, total sulfhydryl groups and oxi- dative products in ischemic- stroke patients as compared to matched controls in Taiwan. Free Radical Research. 1998; (281): 15–24. https://doi.org/10.3109/10715769809097872
- Virtamo J., Valkeila E., Alfthan G., Punsar S., Huttunen J. K., Karvonen M. J. Serum selenium and the risk of coronary heart disease and stroke. Amer- ican Journal of Epidemiology. 1985; 122(2): 276–82. https://doi.org/10.1093/oxfordjournals.aje.a114099
- Zimmermann C., Winnefeld K., Streck S., Roskos M., Haberl R. L. Antioxidant status in acute stroke patients and patients at stroke risk. European Neurology. 2004; 51(3): 157–61. https://doi.org/10.1159/000077662
- Zhang X., Liu C., Guo J., Song Y. Selenium status and cardiovascular diseases: meta-analysis of prospective observational studies and randomized controlled trials. European Journal of Clinical Nutrition. 2016; 70(2): 162–9. https://doi.org/10.1038/ejcn.2015.78
- Скальный А. В., Скальная М. Г., Никоноров A. A., Тиньков A. A. Антагонизм селена с ртутью и мышьяком: от химии к здоровью населения и демографии. Selenium. Springer. 2016: 401–12.
- Dobrachinski F., da Silva M. H., Tassi C. L., de Carvalho N. R., Dias G. R., Golombieski R. M., da Silva Loreto É. L., da Rocha J. B., Fighera M. R., Soares F. A. Neuroprotective eff ect of diphenyl diselenide in a experimental stroke model: maintenance of redox system in mitochondria of brain regions. Neurotoxicity Research. 2014; 26(4): 317–30. https://doi.org/10.1007/s12640-014-9463-2
- Brüning C. A., Prigol M., Luchese C., Jesse C. R., Duarte M. M., Roman S. S., Nogueira C. W. Protective eff ect of diphenyl diselenide on ischemia and reperfusion- induced cerebral injury: involvement of oxidative stress and pro-infl ammatory cytokines. Neurochemical Research. 2012; 37(10): 2249–58. https://doi.org/10.1007/s11064-012-0853-7
- Parnham M., Sies H. Ebselen: prospective therapy for cerebral ischaemia. Expert Opinion on Investigational Drugs. 2000; 9(3): 607–19. https://doi.org/10.1517/13543784.9.3.607
- Yoshizumi M., Kogame T., Suzaki Y., Fujita Y., Kyaw M., Kirima K., Ishizawa K., Tsuchiya K., Kagami S., Tamaki T. Ebselen attenuates oxidative stress- induced apoptosis via the inhibition of the c- Jun N-terminal kinase and activator protein-1 signalling pathway in PC12 cells. British Journal of Pharmacology. 2002; 136(7): 1023032. https://doi.org/10.1038/sj.bjp.0704808
- Li P. A., Mehta S. L., Jing L. Selenoprotein H in neuronal cells. Selenium. 2015: 497–515. https://doi.org/10.1039/9781782622215-00497
- Weisbrot- Lefkowitz M., Reuhl K., Perry B., Chan P. H., Inouye M., Mirochnitchenko O. Overexpression of human glutathione peroxidase protects transgenic mice against focal cerebral ischemia/reperfusion damage. Molecular Brain Research. 1998; 53(1): 333–8.
- Ishibashi N., Prokopenko O., Weisbrot- Lefkowitz M., Reuhl K. R., Mirochnitchenko O. Glutathione peroxidase inhibits cell death and glial activation following experimental stroke. Molecular Brain Research. 2002; 109(1): 34–44.
- Munshi A., Babu S., Kaul S., Shafi G., Rajeshwar K., Alladi S. Depletion of serum zinc in ischemic stroke patients. Methods and Findings in Experi- mental and Clinical Pharmacology. 2010; (32): 433–436.
- Gonullu H., Karadas S., Milanlioglu A., Gonullu E., Kati C., Demir H. Levels of serum trace elements in ischemic stroke patients. Journal of Experi- mental & Clinical Medicine. 2013; 30(4). 55. Koh J. Y., Suh S. W., Gwag B. J., He Y. Y., Hsu C. Y., Choi D. W. The role of zinc in selective neuronal death after transient global cerebral ischemia. Sci- ence. 1996; 272(5264): 1013–1016. https://doi.org/10.1126/science.272.5264.1013
- Clair J., Talwakar M., McClain R. J. Selective removal of zinc from cell media. Journal of Trace Elements in Experimental Medicine. 1995; (7): 143–150.
- Qi Z., Liu K. J. The interaction of zinc and the blood- brain- barrier under physiological and ischemic conditions. Toxicology and Applied Pharma- cology. 2019; (364): 114–119. https://doi.org/10.1016/j.taap.2018.12.018
- De Paula R. C.S., Aneni E. C., Costa A. P.R. et al. Low zinc levels is associated with increased infl ammatory activity but not with atherosclerosis, arte- riosclerosis or endothelial dysfunction among the very elderly. BBA Clinical. 2014; (2): 1–6. https://doi.org/10.1016/j.bbacli.2014.07.002

The content is available under the Creative Commons Attribution 4.0 License.
©
This is an open article under the CC BY 4.0 license. Published by the National Medical Research Center for Rehabilitation and Balneology.