Issue 23-6, 2024

Review

Visual Impairment in Stroke Patients: a Two-Part Review. Part II — Rehabilitation Methods



1,* ORCIDTatyana V. Marfina, 1 ORCIDTatiana V. Konchugova,1 ORCIDTatiana V. Apkhanova,1 ORCIDDetelina B. Kulchitskaya,, 1 ORCID Anastasiya A. Mukhina

1 National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia


ABSTRACT

INTRODUCTION. The search and development of optimal rehabilitation programs for patients who have suffered acute cerebrovascular accident (OMNA) is an urgent problem of modern medicine. The development of scientific and technical capabilities leads to the active introduction of the latest technologies at different stages of medical rehabilitation of cerebral stroke. This article is the second part of a two-part review devoted to the problem of visual impairment in patients with acute cerebrovascular accident, which provides an overview of the methods of rehabilitation of patients in this category.
MAIN CONTENT OF THE REWIEW. This overview of rehabilitation methods for patients with impaired visual functions who have undergone OMNA is based on publications in international and domestic databases OpenAlex, Scilit, Lens, PubMed, Cyberleninka and eLibrary available for analysis by 15.08.2024, with a search depth of mainly 15 years. As a result of the search, 66 articles on a given topic were reviewed. In addition, 6 sources dated from an earlier period (1989–2005) were used, as they contain the necessary information within the framework of this review. The rehabilitation methods considered in the review correspond to the accepted basic strategies for restoring impaired visual functions, including those caused by cerebral stroke. Two main strategies include the use of optical devices to adapt to the environment and training of intact structures of the visual analyzer aimed at compensating for lost functions. The third strategy is aimed at increasing the processing of visual information in areas of residual vision.
CONCLUSION. The variety of types of visual disorders, the degree of influence on the quality of life of stroke patients, necessitates the search and development of optimal rehabilitation programs. This will significantly expand the choice of recovery options after a cerebral stroke in this category of patients.


KEYWORDS: stroke, post-stroke visual impairment, rehabilitation methods, vision recovery

FUNDING: The authors declare no external funding in the conduct of the study.

CONFLICT OF INTEREST: The authors declare no apparent or potential conflicts of interest related to the publication of this article.

FOR CITATION:

Marfina T.V., Konchugova T.V., Apkhanova T.V., Kulchitskaya D.B., Mukhina A.A. Visual Impairment in Stroke Patients: a Two-Part Review. Part II — Rehabilitation Methods. Bulletin of Rehabilitation Medicine. 2024; 23(6):100-110. https://doi.org/10.38025/2078-1962-2024-23-6-100-110 (In Russ.).

FOR CORRESPONDENCE:

Tatyana V. Marfina, E-mail: marfinatv@nmicrk.ru


References:

  1. Rowe F., Hepworth L., Howard C., et al. Impact of visual impairment following stroke (IVIS study): a prospective clinical profile of central and peripheral visual deficits, eye movement abnormalities and visual perceptual deficits. Disabil Rehabil. 2022; 44(13): 3139–3153. https://doi.org/10.1080/09638288.2020.1859631
  2. Hyndman J., Whelan R., Graham B. Post Stroke Visual Impairment: Interdisciplinary Collaborative Program - Canadian Perspective. J Binocul Vis Ocul Motil. 2024; 74(1): 17–31.
  3. Dogra N., Redmond B., Lilley S., et al.V ision-related quality of life after unilateral occipital stroke. Brain Behav. 2024; 14, e3582. https://doi.org/10.1002/brb3.3582
  4. Ali M., Hazelton C., Lyden P., et al. VISTA Collaboration. Recovery from poststroke visual impairment: evidence from a clinical trials resource.
  5. Neurorehabil Neural Repair. 2013; 27(2): 133–41. https://doi.org/10.1177/1545968312454683 5. Tharaldsen A., Sand K., Dalen I., et al. NOR-OCCIP Research Group. Vision-related quality of life in patients with occipital stroke. Acta Neurol Scand. 2020; 141(6): 509–518. https://doi.org/10.1111/ane.13232
  6. Gray C., French J., Bates D., et al. Recovery of visual fields in acute stroke: homonymous hemianopia associated with adverse prognosis. Age Ageing. 1989; 18(6): 419–421. https://doi.org/10.1093/ageing/18.6.419
  7. Zhang X., Kedar S., Lynn M., et al. Natural history of homonymous hemianopia. Neurology. 2006; 66(6): 901–905. https://doi.org/10.1212/01.wnl.0000203338.54323.22
  8. Pambakian A., Wooding D., Patel N., et al. Scanning the visual world: a study of patients with homonymous hemianopia. J Neurol Neurosurg Psychiatry. 2000; 69(6): 751–759. https://doi.org/10.1136/jnnp.69.6.751
  9. Rowe F., Wright D., Brand D., et al. A prospective profile of visual field loss following stroke: prevalence, type, rehabilitation, and outcome. Biomed Res Int. 2013; 2013: 719096. https://doi.org/10.1155/2013/719096
  10.  Khan S., Leung E., Jay W. Stroke and visual rehabilitation. Top Stroke Rehabil. 2008; 15(1): 27–36. https://doi.org/10.1310/tsr1501-27
  11. Pollock A., Hazelton C., Rowe F., et al. Interventions for visual field defects in people with stroke. Cochrane Database of Systematic Reviews 2019; Issue 5: CD008388. https://doi.org/10.1002/14651858
  12.  Szlyk J., Seiple W., Stelmack J., et al. Use of prisms for navigation and driving in hemianopic patients. Ophthalmic Physiol Opt. 2005; 25(2): 128–135. https://doi.org/10.1111/j.1475-1313.2004.00265.x
  13. Giorgi R., Woods R., Peli E. Clinical and laboratory evaluation of peripheral prism glasses for hemianopia. Optom Vis Sci. 2009; 86(5): 492–502. https://doi.org/10.1097/OPX.0b013e31819f9e4d
  14. Bowers A., Keeney K., Peli E. Randomized crossover clinical trial of real and sham peripheral prism glasses for hemianopia. JAMA Ophthalmol. 2014; 132(2): 214–222. https://doi.org/10.1001/jamaophthalmol.2013.5636 
  15. Rowe F., Conroy E., Bedson E., et al. A pilot randomized controlled trial comparing effectiveness of prism glasses, visual search training and standard care in hemianopia. Acta Neurol Scand. 2017; 136(4): 310–321. https://doi.org/10.1111/ane.12725
  16. Crossland M., Reuben M., Bedford S. Novel use of a Franklin split lens for cycling with hemianopia. Ophthalmic Physiol Opt. 2022; 42(1): 218–223. https://doi.org/10.1111/opo.12906 
  17. Falahati M., Kurukuti N., Vargas-Martin F., et al. Oblique multi-periscopic prism for field expansion of homonymous hemianopia. Biomed Opt Express. 2023; 14(5): 2352–2364. https://doi.org/10.1364/BOE.485373
  18. Плисов И.Л., Пузыревский К.Г., Атаманов В.В. Тактика и методы лечения паралитического косоглазия. Бюллетень Сибирского отделения Российской академии медицинских наук. 2009; 29(4): 111–113. [Plisov I.L., Puzyrevsky K.G., Atamanov V.V. Tactics and Methods of Paralytic Strabismus Treatment. Bulletin of the Siberian Branch of the Russian Academy of Medical Sciences. 2009; 29(4): 111–113 (In Russ.).]
  19. Гладышева Г.В., Плисов И.Л., Анциферова Н.Г., Пущина В.Б. Парез горизонтального взора - какую тактику ведения выбрать. Офтальмохирургия. 2023; 2: 80–85. https://doi.org/10.25276/0235-4160-2023-2-80-85 [Gladysheva G.V., Plisov I.L., Antsiferova N.G., Pushchino V.B. Paresis of the horizontal gaze - which tactics to choose. Ophthalmosurgery. 2023; 2: 80–85 (In Russ.).]
  20. Serino A., Barbiani M., Rinaldesi M., et al. Effectiveness of prism adaptation in neglect rehabilitation: a controlled trial study. Stroke. 2009; 40(4): 1392–1398. https://doi.org/10.1161/STROKEAHA.108.530485
  21. Mizuno K., Tsuji T., Takebayashi T., et al. Prism adaptation therapy enhances rehabilitation of stroke patients with unilateral spatial neglect: a randomized, controlled trial. Neurorehabil Neural Repair. 2011; 25(8): 711–720. https://doi.org/10.1177/1545968311407516 
  22. Li J., Li L., Yang Y., Chen S. Effects of Prism Adaptation for Unilateral Spatial Neglect After Stroke: A Systematic Review and Meta-Analysis. Am J Phys Med Rehabil. 2021; 100(6): 584–591. https://doi.org/10.1097/PHM.0000000000001598
  23. Longley V., Hazelton C., Heal C., et al. Non-pharmacological interventions for spatial neglect or inattention following stroke and other non-progressive brain injury. Cochrane Database of Systematic Reviews 2021; Issue 7: CD003586. https://doi.org/10.1002/14651858.CD003586.pub4 
  24. Mannan S., Pambakian A., Kennard C. Compensatory strategies following visual search training in patients with homonymous hemianopia: an eye movement study. J Neurol. 2010; 257(11): 1812–1821. https://doi.org/10.1007/s00415-010-5615-3 
  25. Jacquin-Courtois S., Bays P., Salemme R., et al. Rapid compensation of visual search strategy in patients with chronic visual field defects. Cortex. 2013; 49(4): 994–1000. https://doi.org/10.1016/j.cortex.2012.03.025
  26. Nelles G., Esser J., Eckstein A., et al. Compensatory visual field training for patients with hemianopia after stroke. Neurosci Lett. 2001; 29; 306(3): 189–192. https://doi.org/10.1016/s0304-3940(01)01907-3
  27. Schuett S., Heywood C., Kentridge R., Zihl J. Rehabilitation of hemianopic dyslexia: are words necessary for re-learning oculomotor control? Brain. 2008; 131(Pt 12): 3156–3168. https://doi.org/10.1093/brain/awn285
  28. Aimola L., Lane A., Smith D., et al. Efficacy and feasibility of home-based training for individuals with homonymous visual field defects. Neurorehabil Neural Repair. 2014; 28(3): 207–218. https://doi.org/10.1177/1545968313503219 
  29. Ong Y., Jacquin-Courtois S., Gorgoraptis N., et al. Eye-Search: A web-based therapy that improves visual search in hemianopia. Ann Clin Transl Neurol. 2015; 2(1): 74–78. https://doi.org/10.1002/acn3.154 
  30. de Haan G., Melis-Dankers B., Brouwer W., et al. The Effects of Compensatory Scanning Training on Mobility in Patients with Homonymous Visual Field Defects: A Randomized Controlled Trial. PLoS One. 2015; 10(8): e0134459. https://doi.org/10.1371/journal.pone.0134459
  31. Hanna K., Hepworth L., Rowe F. The treatment methods for post-stroke visual impairment: A systematic review. Brain Behav. 2017; 6; 7(5): e00682. https://doi.org/10.1002/brb3.682
  32. Maeyama T., Okada H., Sakai S. The effects of rehabilitative interventions on reading disorders caused by homonymous visual field defects: a meta- analysis focusing on improvement in reading speed. Acta Neurol Belg. 2024; 124(1): 123–140. https://doi.org/10.1007/s13760-023-02327-6
  33. Tol S.; de Haan G.; Postuma E., et al. Reading Difficulties in Individuals with Homonymous Visual Field Defects: A Systematic Review of Reported Interventions. Neuropsychol. Rev. 2024; 1–47. https://doi.org/10.1007/s11065-024-09636-4
  34. Batul S., Zafar H., Gilani S., et al. The effect of visual scanning exercises in addition to a specific task approach on balance and daily activities in stroke patients with impaired eye movement: a randomized controlled trial. United Kingdom, 2022; 22: 312. https://doi.org/10.1186/s12883-022-02843-7
  35. van Wyk A., Eksteen C., Rheeder P. The effect of visual scanning exercises integrated into physiotherapy in patients with unilateral spatial neglect poststroke: a matched-pair randomized control trial. Neurorehabil Neural Repair. 2014; 28(9): 856–873. https://doi.org/10.1177/1545968314526306 
  36. Spaccavento S., Cellamare F., Cafforio E., Craca A. Efficacy of visual-scanning training and prism adaptation for neglect rehabilitation. Appl Neuropsychol Adult. 2016; 23(5): 313–321. https://doi.org/10.1080/23279095.2015.1038386 
  37. Gammeri R., Schintu S., Salatino A., et al. Effects of prism adaptation and visual scanning training on perceptual and response bias in unilateral spatial neglect. Neuropsychol Rehabil. 2024; 34(2): 155–180. https://doi.org/10.1080/09602011.2022.2158876 
  38. Загайнова А.Ю., Кузюкова А.А., Добрякова В.В. Рашидова Э.Ш. Успешное преодоление односторонней пространственной агнозии в позднем восстановительном периоде ишемического инсульта: клинический случай. Вестник восстановительной медицины. 2023; 22(2): 102– 111. https://doi.org/10.38025/2078-1962-2023-22-2-102-111 [Zagaynova A.Yu., Kuzyukova A.A., Dobryakova V.V., Rashidova E.Sh. Overcoming Unilateral Spatial Agnosia in the Late Recovery Period of Ischemic Stroke: a Case Report. Bulletin of Rehabilitation Medicine. 2023; 22(2): 102–111. https://doi.org/10.38025/2078-1962-2023-22-2-102-111 (In Russ.).]
  39. Sabel B., Kenkel S., Kasten E. Vision restoration therapy (VRT) efficacy as assessed by comparative perimetric analysis and subjective questionnaires.
    Restor Neurol Neurosci. 2004; 22(6): 399–420
  40. Elshout J., Bergsma D., Sibbel J., et al. Improvement in activities of daily living after visual training in patients with homonymous visual field defects using Goal Attainment Scaling. Restor Neurol Neurosci. 2018; 36(1): 1–12. https://doi.org/10.3233/RNN-170719
  41. Pelak V., Dubin M., Whitney E. Homonymous Hemianopia: A Critical Analysis of Optical Devices, Compensatory Training, and NovaVision. Curr Treat Options Neurol. 2007; 9(1): 41–47. https://doi.org/10.1007/s11940-007-0029-y 
  42. Frolov A., Feuerstein J., Subramanian P. Homonymous Hemianopia and Vision Restoration Therapy. Neurol Clin. 2017; 35(1): 29–43. https://doi.org/10.1016/j.ncl.2016.08.010
  43. Mödden C., Behrens M., Damke I., et al. A randomized controlled trial comparing 2 interventions for visual field loss with standard occupational therapy during inpatient stroke rehabilitation. Neurorehabil Neural Repair. 2012; 26(5): 463–469. https://doi.org/10.1177/1545968311425927 
  44. Sabel B., Thut G., Haueisen J., et al. Vision modulation, plasticity and restoration using non-invasive brain stimulation — An IFCN-sponsored review.
    Clin Neurophysiol. 2020; 131(4): 887–911. https://doi.org/10.1016/j.clinph.2020.01.008
  45. Antal A., Nitsche M.A., Kruse W., et al. Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. J Cogn Neurosci. 2004; 16(4): 521–527. https://doi.org/10.1162/089892904323057263 
  46. Kraft A, Roehmel J, Olma M., et al. Transcranial direct current stimulation affects visual perception measured by threshold perimetry. Exp Brain Res. 2010; 207(3–4): 283–290. https://doi.org/10.1007/s00221-010-2453-6
  47. Бакулин И.С., Лагода Д.Ю., Пойдашева А.Г. и др. Транскраниальная стимуляция постоянным током при постинсультной гемианопсии.
    Анналы клинической и экспериментальной неврологии. 2020; 14(2): 5–14. https://doi.org/10.25692/ACEN.2020.2.1 [Bakulin I.S., Lagoda D.Yu., Poydasheva A.G., et al. Transcranial direct current stimulation in poststroke hemianopia. Annals of clinical and experimental neurology. 2020; 14(2): 5–14. https://doi.org/10.25692/ACEN.2020.2.1 (In Russ.).] 
  48. Alber R., Moser H., Gall C., Sabel B.A. Combined Transcranial Direct Current Stimulation and Vision Restoration Training in Subacute Stroke Rehabilitation: A Pilot Study. PM & R. 2017; 9(8): 787–794. https://doi.org/10.1016/j.pmrj.2016.12.003
  49. Plow E., Obretenova S., Jackson M., et al. Temporal profile of functional visual rehabilitative outcomes modulated by transcranial direct current stimulation. Neuromodulation. 2012; 15(4): 367–373. https://doi.org/10.1111/j.1525-1403.2012.00440.x 
  50. Diana L., Casati C., Melzi L. Bianchi Marzoli S, Bolognini N. The effects of occipital and parietal tDCS on chronic visual field defects after brain injury.
    Front Neurol. 2024; 15: 1340365. https://doi.org/10.3389/fneur.2024.1340365 
  51. Xu J., Wu Z., Nürnberger A., Sabel B.A. Reorganization of Brain Functional Connectivity Network and Vision Restoration Following Combined tACS- tDCS Treatment After Occipital Stroke. Front Neurol. 2021; 12: 729703. https://doi.org/10.3389/fneur.2021.729703 
  52. Kim Y., Chun M., Yun G., et al. The effect of virtual reality training on unilateral spatial neglect in stroke patients. Ann Rehabil Med. 2011; 35(3): 309–315. https://doi.org/10.5535/arm.2011.35.3.309 
  53. Salazar A., Vaz P., Marchese R., et al. Noninvasive Brain Stimulation Improves Hemispatial Neglect After Stroke: A Systematic Review and Meta- Analysis. Arch Phys Med Rehabil. 2018; 99(2): 355–366.e1. https://doi.org/10.1016/j.apmr.2017.07.009
  54. Jacquin-Courtois S. Hemi-spatial neglect rehabilitation using non-invasive brain stimulation: or how to modulate the disconnection syndrome? Ann Phys Rehabil Med. 2015; 58(4): 251–258. https://doi.org/10.1016/j.rehab.2015.07.388 
  55. El Nahas N., Elbokl A., Abd Eldayem E., et al. Navigated perilesional transcranial magnetic stimulation can improve post-stroke visual field defect: A double-blind sham-controlled study. Restor Neurol Neurosci. 2021; 39(3): 199–207. https://doi.org/10.3233/RNN-211181 
  56. Лебедева Д.И., Туровинина Е.Ф., Десятова И.Е. и др. Оценка эффективности транскраниальной магнитной стимуляции у пациентов после ишемического инсульта: проспективное исследование. Вестник восстановительной медицины. 2023; 22(4): 31–40. https://doi.org/10.38025/2078-1962-2023-22-4-31-40 [Lebedeva D.I., Turovinina E.F., Desyatova I.E., et al. Effectiveness of Transcranial Magnetic Stimulation in Patients after Ischemic Stroke: a Prospective Study. Bulletin of Rehabilitation Medicine. 2023; 22(4): 31–40. https://doi.org/10.38025/2078-1962-2023-22-4-31-40 (In Russ.).]
  57. Schuhmann T., Duecker F., Middag-van Spanje M., et al. Transcranial alternating brain stimulation at alpha frequency reduces hemispatial neglect symptoms in stroke patients. Int J Clin Health Psychol. 2022; 22(3): 100326. https://doi.org/10.1016/j.ijchp.2022.100326 
  58. Middag-van Spanje M., Schuhmann T., Nijboer T., et al. Study protocol of transcranial electrical stimulation at alpha frequency applied during rehabilitation: A randomized controlled trial in chronic stroke patients with visuospatial neglect. BMC Neurol. 2022; 22(1): 402. https://doi.org/10.1186/s12883-022-02932-7 
  59. Hao J., Xie H., Harp K., et al. Effects of Virtual Reality Intervention on Neural Plasticity in Stroke Rehabilitation: A Systematic Review. Arch Phys Med Rehabil. 2022; 103(3): 523–541. https://doi.org/10.1016/j.apmr.2021.06.024 
  60. Li S., Tang A., Yang B., et al. Virtual reality-based vision therapy versus OBVAT in the treatment of convergence insufficiency, accommodative dysfunction: a pilot randomized controlled trial. BMC Ophthalmol. 2022; 22(1): 182. https://doi.org/10.1186/s12886-022-02393-z 
  61. Dehn L., Piefke M., Toepper M., et al. Cognitive training in an everyday-like virtual reality enhances visual-spatial memory capacities in stroke survivors with visual field defects. Top Stroke Rehabil. 2020; 27(6): 442–452. https://doi.org/10.1080/10749357.2020.1716531 
  62. Daibert-Nido M., Pyatova Y., Cheung K., et al. An Audiovisual 3D-Immersive Stimulation Program in Hemianopia Using a Connected Device. Am J Case Rep. 2021; 22: e931079. https://doi.org/10.12659/AJCR.931079 
  63. Gammeri R., Iacono C., Ricci R., Salatino A. Unilateral Spatial Neglect After Stroke: Current Insights. Neuropsychiatr Dis Treat. 2020; 16: 131–152. https://doi.org/10.2147/NDT.S171461 
  64. Salatino A., Zavattaro C., Gammeri R., et al. Virtual reality rehabilitation for unilateral spatial neglect: A systematic review of immersive, semi- immersive and non-immersive techniques. Neurosci Biobehav Rev. 2023; 152: 105248. https://doi.org/10.1016/j.neubiorev.2023.105248 
  65. Fordell H., Bodin K., Eklund A., Malm J. RehAtt — scanning training for neglect enhanced by multi-sensory stimulation in Virtual Reality. Top Stroke Rehabil. 2016; 23(3): 191–199. https://doi.org/10.1080/10749357.2016.1138670 
  66. Shin J., Kim M., Lee J., et al. Feasibility of hemispatial neglect rehabilitation with virtual reality-based visual exploration therapy among patients with stroke: randomised controlled trial. Front Neurosci. 2023; 17: 1142663. https://doi.org/10.3389/fnins.2023.1142663



Creative Commons License
The content is available under the Creative Commons Attribution 4.0 License.

©


This is an open article under the CC BY 4.0 license. Published by the National Medical Research Center for Rehabilitation and Balneology.