Выпуск 2-84, 2018
Роботизированные устройства в нейрореабилитации: состояние вопроса
1 Белова А.Н., 1 Борзиков В.В., 1 Кузнецов А.Н., 1 Рукина Н.Н.
1 Федеральное государственное бюджетное образовательное учреждение высшего образования «Приволжский исследовательский медицинский университет» Министерства здравоохранения Российской Федерации, Нижний Новгород, Россия
РЕЗЮМЕ
Использование роботизированных устройств (РУ) в комбинации с традиционной кинезотерапией является перспективным направлением реабилитации неврологических пациентов, имеющих выраженные двигательные нарушения. В статье рассмотрены классификации РУ, используемых в целях восстановительного лечения, даны краткие сведения о тех средствах робототехники, которые производятся в настоящее время. Представлены сведенияо преимуществах и рисках робот-ассистируемой терапии в сравнении с традиционными способами нейрореабилитации. Приведены результаты метаанализов и рандомизированных исследований, посвященных клиническойэффективности применения РУ, рассмотрены вопрос экономической эффективности робототерапии. Особоевнимание уделено этическим аспектам разработки новых реабилитационных РУ и требованиям к «идеальному»нейрореабилитационному роботу.
КЛЮЧЕВЫЕ СЛОВА: нейрореабилитация, роботизированные устройства, экзоскелеты
Список литературы:
- Iosa M., Morone G., Cherubini A., Paolucci S. The Three Laws of Neurorobotics: A Review on What Neurorehabilitation Robots Should Do for Patients and Clinicians //J. Med. Biol. Eng. 2016. DOI 10.1007/s40846-016-0115-2.
- Booker K.M. Historical dictionary of science fiction in literature. Lanham, Maryland: Rowman & Littlefield. - 2015.
- Xie Ming. Fundamental of robotics: Linking perception to action. Singapore: World Scientific //Machine Perception and Artificial Intelligence, -2003. - vol. 54. - 716 p.
- Gosine R.G., Harwin W.S., Furby L.J., & Jackson R.D. An intelligent end-effector for a rehabilitation robot. //Journal of Medical Engineering & Technology. 1989; 13(1-2), 37-43.
- Krebs H.I., Hogan N., Aisen M.L., & Volpe B.T. Robot-aided neurorehabilitation. //IEEE Transactions on Rehabilitation Engineering, 1998;6(1), рр.75-87.
- Aisen M.L., Krebs H.I., Hogan N., McDowell F., Volpe B.T. The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. //Archives of Neurology. - 1997. - 54(4). - P. 443-446.
- Hesse S., Schmidt, H. Werner, C. & Bardeleben, A. Upper and lower extremity robotic devices for rehabilitation and for studying motor control. //Current Opinion in Neurology, 2003;16(6),705-710.
- Veneman J.F. Kruidhof, R. Hekman, E.E. Ekkelenkamp, R. Van Asseldonk, E.H. & Van der Kooij, H. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. //IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007; 15(3), 379-386.
- Iosa M., Morone G., Fusco A., Bragoni, M. Coiro, P., Multari M., et al. Seven capital devices for the future of stroke rehabilitation. //Stroke Research & Treatment, 2012, 187965.
- Morone G., Rosati G., Masiero S., Poli P. Robotic Technologies and Rehabilitation: New Tools for Stroke Patients’ Therapy. BioMed Research International. 2013; Article ID 153872, 8 pages http://dx.doi.org/10.1155/2013/153872
- Fazekas G., Horvath M., Toth A. A novel robot training system designed to supplement upper limb physiotherapy of patients with spastic hemiparesis. //Int J Rehabil Res. 2006;29:251-254.
- Huang V.S., Krakauer J.W. Robotic neurorehabilitation: a computational motor learning perspective // J. Neuroeng Rehabil. - 2009. -Vol.6. - P. 5.
- Kalyan K. Mankala, Sai K. Banala, and Sunil K. Agrawal. Novel swing-assist un-motorized exoskeletons for gait training //J. Neuroeng. Reha-bil. - 2009. - Vol. 6. - P. 24
- Воробьев А. А., Андрющенко Ф.А., Засыпкина О.А., Соловьева И.О., Кривоножкина П.С., Поздняков А.М. Терминология и классификация экзоскелетов // Вестник Волгму. - 2015. - №3 (55). - С.71-77.
- Calabrd R.S, Cacciola A, Berte F, Manuli A, Leo A, Bramanti A, Naro A, Milardi D, Bramanti P. Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now? // Neurol Sci. 2016. Apr. 37(4). P. 503-14. doi: 10.1007/s10072-016-2474-4. Epub 2016 Jan 18.
- Brewer L, Horgan F, Hickey A, Williams D. Stroke rehabilitation: recent advances and future therapies. // QJM. - 2013. - 106(1). - P. 11-25.
- Sabel B.A., Matzke S., Prilloff S. Special issues in brain plasticity, repair and rehabilitation: 20 years of a publishing strategy //Restor. Neurol. Neurosci. - 2010.- Vol.28, №6.-P. 719-728.
- Schwartz I Sajin A, MD, Fisher I. The Effectiveness of Locomotor Therapy Using Robotic-Assisted Gait Training in Subacute Stroke Patients: A Randomized Controlled Trial // Medical Association Journal.- 2009.-Vol. 1.- P. 516-523.
- Waldner A., Tomelleri C., Hesse S. Transfer of scientific concepts to clinical practice: recent robot assisted training studies // Funct. Neurol.- 2009.-.№10.- P. 173-177.
- Lim P.A., Tow A.M. Recovery and regeneration after spinal cord injury: a review and summary of recent literature //Ann. Acad. Med. Singapore, 2007; Jan.; 36 (1): 49-57.
- Dietz V., Nef, T., & Rymer W.Z. Neurorehabilitation technology. 2012; London, UK: Springer.
- Belda-Lois J.M., Mena-del Horno, S., Bermejo-Bosch, I., Moreno, J. C., Pons, J. L., Farina, D., et al. Rehabilitation of gait after stroke: A review towards a top-down approach. //Journal of Neuroengineering & Rehabilitation. - 2011. - №8 (1): 66.
- Нурманова Ш.А. Роботизированная механизированная нейрореабилитация. //Нейрохирургия и неврология Казахстана. - 2013. -№1 (30).
- Datteri E. Predicting the long-term effects of humanrobot interaction: A reflection on responsibility in medical robotics. // Science and Engineering Ethics. 2013;19(1), 139-160.
- Regnaux J.P., Saremi K., Marehbian J., Bussel B., & Dobkin B.H. An accelerometry-based comparison of 2 robotic assistive devices for treadmill training of gait. //Neurorehabilitation& Neural Repair, 2008; 22(4), 348-354.
- Delussu A.S., Morone G., Iosa M., Bragoni M. Traballesi M. & Paolucci, S. Physiological responses and energy cost of walking on the Gait Trainer with and without body weight support in subacute stroke patients. // Journal of Neuroengineering &Rehabilitation. 2014; 11, 54.
- Van Der Loos, H.F. M., & Reinkensmeyer, D.J. (2008). Rehabilitation and health care robotics. In B. Siciliano & O.Khatib (Eds.), Springer Handbook of Robotics. - Berlin: Springer, 2008. -pp.1223-1251.
- Takahashi C.D., Der-Yeghiaian L., LeV., Motiwala R.R., Cramer S.C. Robot-based hand motor therapy after stroke. Brain. 2008; 131:425-437.
- Neuhaus P.D., Noorden J.H., Craig T.J., Torres T., Kirschbaum J., Pratt J.E. Design and evaluation of Mina: A robotic orthosis for paraplegics; Proc IEEE Int Conf Rehabil Robot; 2011; pp. 870-877. http://dx.doi.org/10.1109/ICORR.2011.5975468
- Даминов В.Д., Рыбалко Н.В., Горохова И.Г., Короткова И.С., Кузнецов А.Н. Реабилитация больных в остром периоде ишемического инсульта с применением роботизированной системы «Erigo»// Вестник восстановительной медицины.- 2008.- № 6.- C.50-53.
- Tsukahara A., Kawanishi R., Hasegawa Y., Sankai Y. Sit-to-stand and stand-to-sit transfer support for complete paraplegic patients with robot suit HAL. Adv Robot. 2010; 24: 1615-1638. http://dx.doi.org/10.1163/016918610X512622.
- Otaka E., Otaka Y., Kasuga S., Nishimoto A., Yamazaki K., Kawakami M., Ushiba J., Liu M. Clinical usefulness and validity of robotic measures of reaching movement in hemiparetic stroke patients. //J. Neuroeng Rehabil. 2015; Aug 12; 12:66. doi: 10.1186/s12984-015-0059-8.
- Черникова Л.А., Демидова А.Е., Домашенко М.А. Эффект применения роботизированных устройств («Эриго» и «Локомат») в ранние сроки после ишемического инсульта // Вестник Восстановительной медицины. - 2008. - № 5. - С. 73-75.
- Зимина Е.В. Медицинская реабилитация больных с применением роботизированной реконструкции ходьбы в первые месяцы после травмы спинного мозга: автореф. дис. ...канд. биол. наук. - Москва, 2010. - 40 с.
- Сидякина И.В. Эффективность и безопасность ранней аппаратной вертикализации при тяжелом и крайне тяжелом инсульте//Вестник восстановительной медицины. - 2011. - №4. - С. 2-5.
- Романенкова Ю.С., Кузьминова Т.И., Кызымко М.И., Сафоничева М.А. Нейрореабилитация пациентов с инсультом в вертебробазилярном бассейне при помощи роботизированных аппаратов. // Восстановительная медицина, спортивная медицина, лечебная физкультура, курортология и физиотерапия. - 2016. - № 8 (30).
- Nam K.Y., Kim H.J., Kwon B.S., Park J.W., Lee H.J., Yoo A. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review. //J Neuroeng Rehabil. 2017; Mar 23;14(1):24. doi: 10.1186/s12984-017-0232-3.
- Chisholm A.E., Alamro R.A., Williams A.M., Lam T. Overground vs. treadmill-based robotic gait training to improve seated balance in people with motor-complete spinal cord injury: a case report. // J Neuroeng Rehabil. 2017; Apr 11;14(1):27. doi: 10.1186/s12984-017-0236-z.Asimov, I. I Robot. / New York, NY: Gnome Press, 1951.
- Hidler J., Nichols D., Pelliccio M., Brady K., Campbell D.D., Kahn J.H., et al. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. //Neurorehabilitation and Neural Repair, 2009;23, 5-13.
- Husemann B., MQller F., Krewer C., Heller S., Koenig E. Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke // Stroke, 2007; 38: 349-DOI:10.1161/01.STR.0000254607.48765.cb.
- Lo A.C., Guarino P.D., Richards L.G., Haselkorn J.K., Wittenberg G F., & Federman, D.G. Robot-assisted therapy for long-term upper-limb impairment after stroke. //The New England Journal of Medicine, 2010;362(19), 1772-1783.
- Klamroth-Marganska V., Blanco J., Campen K., Curt A., Dietz V., Ettlin T., et al. Three-dimensional, taskspecific robot therapy of the arm after stroke: A multicentre,parallel-group randomised trial. //Lancet Neurology. 2014;13(2),159-166.
- Mehrholz J., Platz T., Kugler J., Pohl M. Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke. The Cochrane Database of Systematic Reviews, 2008; 8(4):CD006876.
- Mehrholz J., Pohl M., Elsner, B. Treadmill training and body weight support for walking after stroke. The Cochrane Database of Systematic Reviews. 2014; 1:CD002840.
- Mehrholz J., Pohl M., Platz T., Kugler J., Elsner B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev. 2015, Nov 7;(11):CD006876. doi: 10.1002/14651858.CD006876. pub4.
- Mehrholz J., Hadrich A., Platz T., Kugler J., Pohl M. Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke. The Cochrane Database of Systematic Reviews, 2012; 6:CD006876.
- Zhang C., Li-Tsang C.W., Au R.K. Robotic approaches for the rehabilitation of upper limb recovery after stroke: a systematic review and metaanalysis. Int J. Rehabil Res. 2017 Mar; 40(1):19-28. doi: 10.1097/MRR.0000000000000204.
- Veerbeek J.M., Langbroek-Amersfoort A.C., van Wegen E.E., Meskers CG, Kwakkel G. Effects of Robot-Assisted Therapy for the Upper Limb After Stroke. //Neurorehabil Neural Repair. 2017; Feb;31(2):107-121. doi: 10.1177/1545968316666957. Epub 2016 Sep 24.
- Mehrholz J., Werner C., Kugler J., Pohl M. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2007, Issue 4. Art. No.: CD006185. DOI: 10.1002/14651858.CD006185.pub2.
- Mehrholz J., Elsner B., Werner C., Kugler J., Pohl, M. Electromechanical-assisted training for walking after stroke. The Cochrane Database of Systematic Reviews. 2013; 7:CD006185.
- Louie D.R., Eng J.J. Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review. //J. Neuroeng Rehabil. 2016 Jun 8;13(1):53. doi: 10.1186/s12984-016-0162-5.
- Schwartz I., Meiner Z.Robotic-assisted gait training in neurological patients: who may benefit? //Ann Biomed Eng. 2015; May; 43(5):1260-9. doi: 10.1007/s10439-015-1283-x.
- Morone G., Bragoni M., Iosa M., De Angelis, D., Venturiero,V., Coiro P., et al. Who may benefit from robotic-assisted gait training? A randomized clinical trial in patients with subacute stroke. //Neurorehabilitation & Neural Repair, 2011; 25(7),636-644.
- Bragoni M., Broccoli M., Iosa M., Morone G., De Angelis D.,Venturiero V., et al. Influence of psychologic features on rehabilitation outcomes in patients with subacute stroke trained with robotic-aided walking therapy. // American Journal of Physical & Medicine Rehabilitation. - 2013. -92(10 Suppl 2). - P. 16-25.
- Iosa M., Morone G., Bragoni M., De Angelis D., Venturiero V., Coiro P., et al. Driving electromechanically assisted Gait Trainer for people with stroke. //Journal of Rehabilitation Research and Development, 2011,48(2), 135-146.
- Morone G., Iosa, M., Bragoni M., De Angelis D., Venturiero V., Coiro P., et al. (2012). Who may have durable benefit from robotic gait training?: A 2-year follow-up randomized controlled trial in patients with subacute stroke. Stroke, 43(4), 1140-1142.
- Masiero S., Poli P., Rosati G., Zanotto D., Iosa M., Paolucci S., et al. The value of robotic systems in stroke rehabilitation. //Expert Review of Medical Devices, 2014;11(2), 187-198.
- Bouton C.E., et al., Restoring cortical control of functional movement in a human with quadriplegia. Nature, 2016.
- Collinger J.L., et al., High-performance neuroprosthetic control by an individual with tetraplegia. Lancet, 2013. 381(9866): 557-64.
- Turchetti G., Vitiello N., Trieste L., Romiti S., Geisler E., & Micera S. Why effectiveness of robot-mediated neurorehabilitation does not necessarily influence its adoption. //IEEE Reviews in Biomedical Engineering, 2014; 7, 143-153.
- Hesse S., HeB A., Werner C., Kabbert N., & Buschfort R. Effect on arm function and cost of robot-assisted group therapy in subacute patients with stroke and a moderately to severely affected arm: A randomized controlled trial. //Clinical Rehabilitation. - 2014. - №28(7), рр. 637-647.
- Wagner, T.H., Lo, A.C., Peduzzi P., Bravata D.M., Huang G.D., Krebs H.I., et al. An economic analysis of robotassisted therapy for long-term upper-limb impairment after stroke. //Stroke, 2011; 42(9), 2630-2632.
- Morone G., Masiero S., Werner C., & Paolucci S. Advances in neuromotor stroke rehabilitation. //Biomed Research International, 2014; 236043.
- Asimov I.I. Robot. / New York, NY: Gnome Press, 1951.
- Sawyer R.J. Robot ethics. //Science, 2007; 318(5853), 1037.
- Fazekas G., Tavaszi I., Toth A.New opportunities in neuro-rehabilitation: robot mediated therapy in conditons post central nervous system impairments. Ideggyogy Sz. 2016 Mar 30;69(5-6):148-54.
- Pennycott A., Wyss D., Vallery H., Klamroth-Marganska V., Riener R. Towards more effective robotic gait training for stroke rehabilitation: a review. //J. Neuroeng Rehabil. 2012; 9(1):1. doi: 10.1186/1743-0003-9-65.
- Emken J.L., Benitez R., Reinkensmeyer D.J. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed. // J Neuroeng Rehabil. 2007;4(1):1. doi: 10.1186/1743-0003-4-8.
- Keller U., Scho"lch S., Albisser U., Rudhe C., Curt A., Riener R., & Klamroth-Marganska, V. (2015). Robot-assisted arm assessments in spinal cord injured patients: A consideration of concept study. PLoS ONE, 10(5), e0126948.
- Maggioni S., Melendez-Calderon A., van Asseldonk E., Klamroth-Marganska V., LQnenburger L., Riener R., van der Kooij H. Robot-aided assessment of lower extremity functions: a review. //J. Neuroeng Rehabil. 2016; Aug 2;13(1):72. doi: 10.1186/s12984-016-0180-3.
- Shirota C., van Asseldonk E., Matjacic Z., Vallery H., Barralon P., Maggioni S., Buurke J.H., Venemancorresponding J.F. Robot-supported assessment of balance in standing and walking //J Neuroeng Rehabil. 2017; 14: 80. doi: 10.1186/s12984-017-0273-7.
Контент доступен под лицензией Creative Commons Attribution 4.0 License.
©
Эта статья открытого доступа по лицензии CC BY 4.0. Издательство: ФГБУ «НМИЦ РК» Минздрава России.