Выпуск 2-90, 2019
Некоторые аспекты эффективности протезирования модульными протезами с внешним источником энергии после ампутации нижних конечностей на уровне бедра (обзор литературы)
1 Мезенцева Е.А., 2 Еремушкин М.А., 2 Колышенков В.А.
1 ООО «Отто Бокк-Ортопедическая техника», Москва, Россия
2 ФГБУ «Национальный медицинский исследовательский центр реабилитации и курортологии» Минздрава России, Москва, Россия
РЕЗЮМЕ
Модульные протезы бедра с микропроцессорным управлением коленного модуля (MPK-microprocessor-controlledknee) распространены по всему миру, в том числе, и в России, и в ряде стран Европы и в СШ А являются стандартомэкзопротезирования. MPK-протезы обеспечивают по сравнению с протезами с механическими коленными модулями: более высокий уровень безопасности для пациентов с точки зрения их высокой подкосоустойчивости, быстройадаптации к изменениям скорости ходьбы и направления движения за счет нескольких датчиков и микропроцессорного управления гидравлическим тормозом с частотой 50–100Гц в режиме реального времени; а также снижаютэнергозатраты пациента при ходьбе, увеличивают произвольно выбираемую скорость ходьбы и возможную максимальную скорость, увеличивают двигательную активность пациента за счет увеличения среднего ежедневно преодолеваемого расстояния; помогают избавиться от дополнительных средств опоры и инвалидных колясок, вернутьпрежний уровень мобильности в целом, максимально приблизить рисунок ходьбы к физиологическому как никогдапрежде, и значимо улучшить качество жизни. Неожиданный вывод о том, что возраст пациента, причина ампутации(в том числе, сосудистые заболевания), класс мобильности (уровень двигательной активности), а также уровень ампутации не имеют объясняющей силы в качестве предикторов для использования функциональных преимуществМПК-протезов, – уверенно подтверждается исследователями разных стран. К сожалению, мы не встретили аналитических работ на данную тему на русском языке, в связи с чем в качестве источников информации были выбраныработы иностранных авторов.
КЛЮЧЕВЫЕ СЛОВА: ампутация, нижние конечности, реабилитация, модульные протезы бедра с внешним источником энергии, электронные коленные модули, мобильность, безопасность, качество жизни.
Список литературы:
- Thiele J, Westebbe B, Bellmann M, et al. Designs and performance of microprocessor-controlled knee joints. Biomed Tech 2014; 59:65-77.)
- Highsmith MJ, Kahle JT, Bongiorni DR, et al. Safety, energy efficiency, and cost efficacy of the C-Leg for transfemoral amputees: a review of the literature. Prosthet Ortho Int 2010; 34:362-377.
- Samuelsson KAM, Toytari O, Salminen A, et al. Effect of lower limb prosthesis on activity, participation, and quality of life: a systematic review. Prosthet Ortho Int 2012; 36:145-158.
- Huppert L, Mileusnic M, Hahn A. Das Genium-Prothesenkniegelenk—ein Uberblick uber die wissenschaftliche Evidenz (Genium prosthetic knee joint—Overview of scientific evidence). Orthop Tech 2016; 4:44-49.
- Hahn A, Lang M. Effects of mobility grade, age and etiology on functional benefit and safety of subjects evaluated in over 1200 C-Leg trial fittings in Germany. J Prosthet Orthot 2015; 27:86-94.)
- Andreas Hahn, Michael Lang, Claudia Stuckart Analysis of clinically important factors on the performance of advanced hydraulic, microprocessor-controlled exo-prosthetic knee joints based on 899 trial fittings.. Medicine (Baltimore). 2016 Nov; 95(45)
- http://www.has-sante.fr/portail/jcms/c_1769088/fr/3c100-c-leg. Accessed July 23, 2016.
- Kannenberg A, Zacharias B, Probsting E. Benefits of microprocessor controlled prosthetic knees to limited community ambulators: a systematic review. J Rehabil Res Dev 2014; 51:1469-1496.
- Wetz HH, Hafkemeyer U, Drerup B. Einfluss des C-Leg-Kniegelenk-Passteiles der Fa. Otto Bock auf die Versorgungsqualitat Oberschenkelamputierter. Orthopade 2005; 34:298-319.)
- Kenton R. Kaufmana, Kathie A. Bernhardt, Kevin Symms. Functional assessment and satisfaction of transfemoral amputees with low mobility (FASTK2): A clinical trial of microprocessor-controlled vs. nonmicroprocessor-controlled knees. Motion Analysis Laboratory,USA. Journal Clinical Biomechanics, 58 (2018), s.116-122.
- CVD Kenevo Version 1 October 2018 I CRS Global Market Access I Dr. Susanne Seidinger
- Wong C, Young R, Ow-Wing C, et al. Determining 1-yr prosthetic use for mobility prognoses for community-dwelling adults with lower- limb amputation: development of a clinical prediction rule. Am J Phys Med Rehabil 2016; 95:339-347.
- Johnson VJ, Kondziela S and Gottschalk F. Pre and post-amputation mobility of trans-tibial amputees: correlation to medical problems, age and mortality. Prosthet Orthot Int 1995; 19(3): 159-164.
- Rommers GM, Vos LD, Groothoff JW and Eisma WH. Mobility of people with lower limb amputations: scales and questionnaires: a review. Clin Rehabil 2001; 15(1): 92-102.
- Miller WC, Deathe AB, Speechley M and Koval J. The influence of falling, fear of falling, and balance confidence on prosthetic mobility and social activity among individuals with a lower extremity amputation. Arch Phys Med Rehabil 2001; 82(9): 1238-1244.
- Davies B and Datta D. Mobility outcome following unilateral lower limb amputation. Prosthet Orthot Int 2003; 27(3): 186-190.
- Kahle JT, Highsmith MJ, Hubbard SL. Comparison of nonmicroprocessor knee mechanism versus C-Leg on Prosthesis Evaluation Questionnaire, stumbles, falls, walking tests, stair descent, and knee preference. J Rehabil Res Dev. 2008; 45 (1): 1-14.
- Hafner BJ, Smith DG. Differences in function and safety between Medicare Functional Classification Level-2 and -3 transfemoral amputees and influence of prosthetic knee joint control. J Rehabil Res Dev 2009; 46:417-433.)
- Maaref, K., Andre, J. M., Paysant, J., Martinet, N., Grumillier, C., & Ghannouchi, S. (2010). Kinematics in the terminal swing phase of unilateral transfemoral amputees: microprocessor-controlled versus swing-phase control prosthetic knees. Archives of physical medicine and rehabilitation, 91(6), 919-925.
- Orendurff, M. S. S. A. D., Klute, G. K., McDowell, M. L., Pecoraro, J. A., & Czerniecki, J. M. (2006). Gait efficiency using the C-Leg. The Journal of Rehabilitation Research and Development, 43(2), 239-246.
- Segal, A. D. O. M. S., Klute, G. K., McDowell, M. L., Pecoraro, J. A., Shofer, J., & Czerniecki, J. M. (2006). Kinematic and kinetic comparisons of transfemoral amputee gait using C-Leg and Mauch SNS prosthetic knees. The Journal of Rehabilitation Research and Development, 43(7), 857-870.).
- Perry, J. B. J. M., Newsam, C. J., & Conley, P. (2004). Energy expenditure and gait characteristics of a bilateral amputee walking with C-leg prostheses compared with stubby and conventional articulating prostheses. Archives of physical medicine and rehabilitation, 85(10), 1711-1717.
- Sawers AB, Hafner BJ. Outcomes associated with the use of microprocessor-controlled prosthetic knees among individuals with unilateral transfemoral limb loss: a systematic review. J Rehabil Res Dev. 2013; 50 (3): 273-314.),
- Kaufman KR, Levine JA, Brey RH, et al. Gait and balance of transfemoral amputees using passive mechanical and microprocessor-controlled prosthetic knees. Gait Posture. 2007; 26 (4): 489-493.
- Seymour, Ron Engbretson Brenda; Kott, Karen; Ordway, Nathaniel; Brooks, Gary; Crannell, Jessica; Hickernell, Elise; Wheeler, Katie (2007). Comparison between the C-leg microprocessor-controlled prosthetic knee and non-microprocessor con-trol prosthetic knees: a preliminary study of energy expenditure, obstacle course performance, and quality of life survey. Prosthet Orthot Int 31 (1), 51-61
- Schmalz, T. B. S., & Jarasch, R. (2002). Energy expenditure and biomechanical characteristics of lower limb amputee gait: the influence of prosthetic alignment and different prosthetic components. Gait & Posture, 16(3), 255-263.
- Williams, Rhonda M.; Turner, Aaron P.; Orendurff, Michael; Segal, Ava D.; Klute, Glenn K.; Pecoraro, Jan; Czerniecki, Joseph (2006). Does having a computerized prosthetic knee influence cognitive performance during amputee walking? Arch Phys Med Rehabil 87 (7), 989-994.
- Hafner, B. J., Willingham, L. L., Buell, N. C., Allyn, K. J., & Smith, D. G. (2007). Evaluation of function, performance, and preference as transfemoral amputees transition from mechanical to microprocessor control of the prosthetic knee. Archives of physical medicine and rehabilitation, 88(2), 207217.
- Streppel KR, de Vries J and van Harten WH. Functional status and prosthesis use in amputees, measured with the prosthetic profile of the amputee (PPA) and the short version of the sickness impact profile (SIP68). Int J Rehabil Res 2001; 24(3): 251-256.
- Ackerley SJ, Gordon HJ, Elston AF, Crawford LM and McPherson KM. Assessment of quality of life and participation within an outpatient rehabilitation setting. Disabil Rehabil 2009; 31(11): 906-913.
- Eiser C, Darlington A-SE, Stride CB and Grimer RJ. Quality of life implications as a consequence of surgery: limb salvage, primary and secondary amputation. Sarcoma 2001; 5(4): 189-195.
- Schoppen T, Boonstra A, Groothoff WJ, de Vries J, Goeken NH and Eisma WH. Epidemiologic characteristics and quality of life of lower limb amputee patients in adulthood in the Netherlands. Groningen: University of Groningen, 2002
- Hagberg K and Branemark R. Consequences of non-vascular trans-femoral amputation: a survey of quality of life, prosthetic use and problems. Prosthet Orthot Int 2001; 25(3): 186-194.
- Pezzin LE, Dillingham TR and MacKenzie EJ. Rehabilitation and the long-term outcomes of persons with trauma-related amputations. Arch Phys Med Rehabil 2000; 81(3): 292-300.
- Richa Sinha, Wim JA van den Heuvel and Perianayagam Arokiasamy Factors affecting quality of life in lower limb amputees. Prosthetics and Orthotics International 35(1) 90-96. The International Society for Prosthetics and Orthotics, 2011
- Asano M, Rushton P, Miller WC and Deathe BA. Predictors of quality of life among individuals who have a lower limb amputation. Prosthet Orthot Int 2008; 32(2): 231-243.)
- van der Schans CP, Geertzen JHB, Schoppen T and Dijkstra PU. Phantom pain and health-related quality of life in lower limb amputees. J Pain Symptom Manage 2002; 24(4): 429-436.
- Deans SA, McFadyen AK and Rowe PJ. Physical activity and quality of life: a study of a lower-limb amputee population. Prosthet Orthot Int 2008; 32(2): 186-200.
- Gallagher P, Allen D and Maclachlan M. Phantom limb pain and residual limb pain following lower limb amputation: a descriptive analysis. Disabil Rehabil 2001; 23(12): 522-530.
- Demet K, Martinet N, Guillemin F, Paysant J and Andre J-M. Health related quality of life and related factors in 539 persons with amputation of upper and lower limb. Disabil Rehabil 2003; 25(9): 480-486.
- Miller, WC, Speechley, M, Deathe, B. The prevalence and risk factors of falling and fear of falling among lower extremity amputees. Arch Phys Med Rehabil 2001; 82(8): 1031-1037.
- Tinetti ME, Speechley M, Ginter SF. Risk factors for falls among elderly persons living in the community. N Engl J Med 1988;319 (26):1701-1707
- Tinetti ME, Mendes de Leon CF, Doucette JT, Baker DI. Fear of falling and fall-related efficacy in relationship to functioning among community-living elders. J Gerontol 1994;49(3):M140-M147
- Maki BE, Holliday PJ, Topper AK. Fear of falling and postural performance in the elderly. J Gerontol 1991;46(4):M123-M131.
- Nevitt MC. Falls in older persons: risk factors and prevention. In: Berg RL, Cassells JS, Stokes J, editors. The Second Fifty Years: Promoting Health and Preventing Disability. Washington, DC: National Academy Press; 1990: 263-290.
- Speechley M, Tinetti M. Falls and injuries in frail and vigorous community elderly persons. J Am Geriatr Soc 1991;39(1):46-52.
- Blumentritt, S, Schmalz, T, Jarasch, R. The safety of C-leg: Biomechanical tests. J Prosthet Orthot 2009; 21(1): 2-17.
- Stevens, PM, Carson, R. Case report: Using the Activities-Specific Balance Confidence Scale to quantify the impact of prosthetic knee choice on balance confidence. J Prosthet Orthot 2007; 19(4): 114-116.
- Berry, D, Olson, MD, Larntz, K. Perceived stability, function, and satisfaction among transfemoral amputees using microprocessor and nonmicroprocessor controlled prosthetic knees: A multicenter survey. J Prosthet Orthot 2009; 21(1): 32-42.
- Highsmith, M. J., Kahle, J. T., Shepard, N. T., & Kaufman, K. R. (2014). The Effect Of The C-Leg Knee Prosthesis On Sensory Dependency And Falls During Sensory Organization Testing. Technology & Innovation, 15(4), 343-347
- Drerup, B., Wetz, H. H., Bitterle, K., & Schmidt, R. (2008). Langzeitergebnisse mit dem C-Leg - Ergebnisse einer retrospektiven Studie: Long Term Results with the C-Leg - Results of a Retrospective Study. Orthopadie-Technik, 3, 169-174.
- Wong, C. K., Wilska, J., & Stern, M. (2012). Balance, Balance Confidence, and Falls Using Nonmicroprocessor and Microprocessor Knee Prostheses. JPO Journal of Prosthetics and Orthotics, 24(1), 16-18.
Контент доступен под лицензией Creative Commons Attribution 4.0 License.
©
Эта статья открытого доступа по лицензии CC BY 4.0. Издательство: ФГБУ «НМИЦ РК» Минздрава России.