Выпуск 3-20, 2021
Обзорная статья
Значение физических нагрузок в реабилитации больных сердечно-сосудистыми заболеваниями
1 Владимирский В.Е., 1
Владимирский Е.В., 1 Лунина А.Н., 2
Фесюн А.Д., 2
Рачин А.П., 2
Лебедева О.Д., 2
Яковлев М.Ю.
1 Пермский государственный медицинский университет имени академика Е.А. Вагнера, Пермь, Россия
2 Национальный медицинский исследовательский центр реабилитации и курортологии Минздрава России, Москва, Россия
РЕЗЮМЕ
В обзоре проанализированы данные научных публикаций о влиянии молекулярных механизмов, инициируемых физическими нагрузками на функцию сердечно-сосудистой системы и течение кардиальных заболеваний. Как показала практика и ряд доказательных исследований, благоприятные эффекты физических нагрузок на исходы заболеваний при ряде кардиальных нозологий сопоставимы с медикаментозным лечением. Многочисленные механизмы опосредуют преимущества регулярных физических упражнений для оптимального функционирования сердечно-сосудистой системы.
Физические упражнения вызывают широко распространенные изменения в многочисленных клетках, тканях и органах в ответ на повышенную метаболическую потребность, включая адаптацию сердечно-сосудистой системы.Физические упражнения, включающие различные виды аэробных упражнений разной интенсивности и длительности, являются важным компонентом терапевтического лечения пациентов с сердечно-сосудистыми заболеваниями. Знание молекулярных основ влияния физических нагрузок на сердечно-сосудистую систему дает возможность использовать биохимические маркеры для оценки эффективности реабилитационных программ.
КЛЮЧЕВЫЕ СЛОВА: кардиореабилитация, сердечно-сосудистые заболевания, физические нагрузки, молекулярные механизмы
ИСТОЧНИК ФИНАНСИРОВАНИЯ: Авторы заявляют об отсутствии финансирования при проведении исследования
КОНФЛИКТ ИНТЕРЕСОВ: Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи
ДЛЯ ЦИТИРОВАНИЯ: Владимирский В.Е., Владимирский Е.В., Лунина А.Н., Фесюн А.Д., Рачин А.П., Лебедева О.Д., Яковлев М.Ю. Значение физических нагрузок в реабилитации больных сердечно-сосудистыми заболеваниями. Вестник восстановительной медицины. 2021; 20(3): 16-25. https://doi.org/10.38025/2078-1962-2021-20-3-16-25
ДЛЯ КОРРЕСПОНДЕНЦИИ:
Лебедева Ольга Даниаловна, e-mail: Lebedeva-OD@yandex.ru
Список литературы:
- Thomas R.J., King M., Lui K. et al. AACVPR/ACC/AHA 2007 Cardiac Rehabilitation performance indicators for referral and delivery of cardiac rehabilitation/secondary prevention services. Journal of Cardiopulmonary Rehabilitation and Prevention. 2007; (27): 260-90.
- Piepoli M.F., Corra U., Benzer W. et al. Secondary prevention through cardiac rehabilitation: from knowledge to implementation. Position paper of the Cardiological Rehabilitation Section of the European Association for the Prevention of Cardiovascular Diseases and Rehabilitation. European Journal of Cardiovascular Prevention and Rehabilitation. 2010; (17): 1-17.
- Исмайлов И.С., Мамедьярова И.А., Баранов А.В., Мустафаев Р.Д., Лебедева О.Д., Ачилов А.А. Сочетанное применение кинезо- и лазеротерапии в коррекции нарушений регионарной гемодинамики при дилатационной кардиомиопатии. Вопросы курортологии, физиотерапии и лечебной физической культуры. 2020; Т.97(5): 13-21. https://doi.org/10.17116/kurort20209705113
- Corbalan R., Bassand J.P., Illingworth L., Kayani G., Pieper K.S., Ambrosio G., Camm A.J., Fitzmaurice D.A., Fox K.A.A., Goldhaber S.Z., Goto S., Haas S., Mantovani L.G., Misselwitz F., Turpie A.G.G., Verheugt F.W.A., Kakkar A.K., Hacke W., Gersh B.J., Luciardi H.L. et al. Analysis of outcomes in ischemic vs nonischemic cardiomyopathy in patients with atrial fibrillation: a report from the garfield-af registry. JAMA Cardiology. 2019; V.4(6): 526-548. https://doi.org/10.1001/jamacardio.2018.4729
- Haas S., Cate H.T., Accetta G., Bassand J.P., Kayani G., Kakkar A.K., Angchaisuksiri P., John Camm A., Corbalan R., Darius H., Fitzmaurice D.A., Goldhaber S.Z., Goto S., Jacobson B., Mantovani L.G., Misselwitz F., Eickels M.V., Pieper K., Schellong S.M., Stepinska J. et al. Quality of vitamin k antagonist control and 1-year outcomes in patients with atrial fibrillation: a global perspective from the garfield-af registry. PLoS ONE. 2016; V.11(10): e0164076 p. https://doi.org/10.1371/journal.pone.0164076
- Sawhney J.P., Kothiwale V.A., Bisne V., Durgaprasad R., Vanajakshamma V., Jadhav P., Chopda M., Meena R., Vijayaraghavan G., Chawla K., Allu J., Pieper K.S., Kakkar A.K., John Camm A., Bassand J.P., Fitzmaurice D.A., Goldhaber S.Z., Goto S., Haas S., Hacke W. et al. Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in india: insights from the garfield-af registry. Indian Heart Journal. 2018; V.70(6): 828-835. https://doi.org/10.1016/j.ihj.2018.09.001
- Никифорова Т.И., Лебедева О.Д., Рыков С.В., Белов А.С. Современные комплексные технологии реабилитации и профилактики у больных артериальной гипертензией. Вопросы курортологии, физиотерапии и лечебной физической культуры. 2013; Т.90(6): 52-58.
- 8. Ehrman J.K., Gordon P.M., Visich P.S., Keteyian S.J. Clinical exercise phisiology. 1st ed. Champaign. IL: Human Kinetics Publishers. 2003: 103-128.
- Jardins T. Cardiopulmonary anatomy & physiology essentials for respiratory care. 4th ed. Clifton Park. NY: Thomson Delmar Learning. 2002: 156-160.
- Stanford K.I., Goodyear L.J. Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle. Advances in Physiology Education. 2014; (38): 308-14. https://doi.org/10.1152/advan.00080.2014
- Nystoriak M.A., Bhatnagar A. Cardiovascular Effects and Benefits of Exercise. Frontiers in Cardiovascular Medicine. 2018; (5): 135 p. https://doi.org/10.3389/fcvm.2018.00135
- Egan B., Zierath J.R. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metabolism. 2013; (17): 162-84. https://doi.org/10.1016/j.cmet.2012.12.012
- Slentz C.A., Bateman L.A., Willis L.H., Granville E.O., Piner L.W., Samsa G.P. et al. Effects of exercise training alone vs. a combined exercise and nutritional lifestyle intervention on glucose homeostasis in prediabetic individuals: a randomised controlled trial. Diabetologia. 2016; (59): 2088-98. https://doi.org/10.1007/s00125-016-4051-z
- Conn V.S., Koopman R.J., Ruppar T.M., Phillips L.J., Mehr D.R., Hafdahl A.R. Insulin sensitivity following exercise interventions: systematic review and meta-analysis of outcomes among healthy adults. Journal of Primary Care & Community Health. 2014; (5): 211-22. https://doi.org/10.1177/2150131913520328
- Lin X., Zhang X., Guo J., Roberts C.K., McKenzie S., Wu W.C. et al. Effects of exercise training on cardiorespiratory fitness and biomarkers of cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials. Journal of the American Heart Association. 2015; (4): e002014 p. https://doi.org/10.1161/JAHA.115.002014
- Petridou A., Nikolaidis M.G., Matsakas A., Schulz T., Michna H., Mougios V. Effect of exercise training on the fatty acid composition of lipid classes in rat liver, skeletal muscle, and adipose tissue. Journal of Applied Physiology. 2005; (94): 84-92. https://doi.org/10.1007/s00421-004-1294-z
- Fiuza-Luces C., Garatachea N., Berger N.A., Lucia A. Exercise is the real polypill. Physiology. 2013; (28): 330-58. https://doi.org/10.1152/physiol.00019.2013
- Che L., Li D. The effects of exercise on cardiovascular biomarkers: new Insights, recent data, and applications. Advances in Experimental Medicine and Biology. 201 7; (999): 43-53. https://doi.org/10.1007/978-981-10-4307-9
- Fontana L. Interventions to promote cardiometabolic health and slow cardiovascular ageing. Nature Reviews Cardiology. 2018; (15): 566-77. https://doi.org/10.1038/s41569-018-0026-8
- Swift D.L., Johannsen N.M., Lavie C.J., Earnest C.P., Church T.S. The role of exercise and physical activity in weight loss and maintenance. Progress in Cardiovascular Diseases. 2014; (56): 441-7. https://doi.org/10.1016/j.pcad.2013.09.012
- Fontana L., Villareal D.T., Weiss E.P., Racette S.B., Steger-May K., Klein S. et al. Washington University School of Medicine, Calorie restriction or exercise: effects on coronary heart disease risk factors. A randomized, controlled trial. American Journal of Physiology-Endocrinology and Metabolism. 2007; (293): E197-202. https:// doi.org/10.1152/ajpendo.00102.2007
- Duscha B.D., Slentz C.A., Johnson J.L., Houmard J.A., Bensimhon D.R., Knetzger K.J. et al. Effects of exercise training amount and intensity on peak oxygen consumption in middle-age men and women at risk for cardiovascular disease. Chest. 2005; (128): 2788-93. https://doi.org/10.1378/chest.128.4.2788
- Vega R.B., Konhilas J.P., Kelly D.P., Leinwand L.A. Molecular mechanisms underlying cardiac adaptation to exercise. Cell Metabolism. 2017; (25): 1012-26. https://doi.org/10.1016/j.cmet.2017.04.025
- Stanford K.I., Goodyear L.J. Exercise regulation of adipose tissue. Adipocyte. 2016; (5): 153-62. https://doi.org/10.1080/21623945.2016.1191307
- Vettor R., Valerio A., Ragni M., Trevellin E., Granzotto M., Olivieri M. et al. Exercise training boosts eNOS-dependent mitochondrial biogenesis in mouse heart: role in adaptation of glucose metabolism. American Journal of Physiology-Endocrinology and Metabolism. 2014; (306): E519-28. https://doi.org/10.1152/ajpendo.00617.2013
- Borges J.P., da Silva Verdoorn K. Cardiac ischemia/reperfusion injury: the beneficial effects of exercise. Advances in Experimental Medicine and Biology. 2017; (999): 155-179.
- Kasapis C., Thompson P.D. The effects of physical activity on serum C-reactive protein and inflammatory markers - A systematic review. Journal of the American College of Cardiology. 2005; (45): 1563-9. https://doi.org/10.1016/j.jacc.2004.12.077
- Joki Y., Ohashi K., Yuasa D., Shibata R., Kataoka Y., Kambara T. et al. Neuron-derived neurotrophic factor ameliorates adverse cardiac remodeling after experimental myocardial infarction. Circulation: Heart Failure. 2015; (8): 342-51. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001647
- Irving B.A., Lanza I.R., Henderson G.C., Rao R.R., Spiegelman B.M., Nair K.S. Combined training enhances skeletal muscle mitochondrial oxidative capacity independent of age. Journal of Clinical Endocrinology and Metabolism. 2015; (100): 1654-63. https://doi.org/10.1210/jc.2014-3081
- Konopka A.R., Suer M.K., Wolff C.A., Harber M.P. Markers of human skeletal muscle mitochondrial biogenesis and quality control: effects of age and aerobic exercise training. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences. 2014; (69): 371-8. https://doi.org/10.1093/gerona/glt107
- Vella C.A., Ontiveros D., Zubia R.Y. Cardiac function and arteriovenous oxygen difference during exercise in obese adults. European Journal of Applied Physiology. 2011; (111): 915-23. https://doi.org/10.1007/s00421-010-1554-z
- Tao L., Bei Y., Lin S., Zhang H., Zhou Y., Jiang J. et al. Exercise training protects against acute myocardial infarction via improving myocardial energy metabolism and mitochondrial biogenesis. Cellular Physiology & Biochemistry. 2015; (37): 162-75. https://doi.org/10.1159/000430342
- Doenst T., Nguyen T.D., Abel E.D. Cardiac metabolism in heart failure: implications beyond ATP production. Circulation Research. 2013; (113): 709-24. https://doi.org/10.1161/CIRCRESAHA.113.300376
- Velez M., Kohli S., Sabbah H.N. Animal models of insulin resistance and heart failure. Heart Failure Reviews. 2014; (19): 1-13. https://doi.org/10.1007/s10741-013-9387-6
- Bird S.R., Hawley J.A. Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport & Exercise Medicine. 2016; (2): e000143. https://doi.org/10.1136/bmjsem-2016-000143
- Riehle C., Abel E.D. Insulin signaling and heart failure. Circulation Research. 2016; (118): 1151-69. https://doi.org/10.1161/CIRCRESAHA.116.306206
- Incalza M.A., D’Oria R., Natalicchio A., Perrini S., Laviola L., Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Journal of Cardiovascular Pharmacology. 2018; (100): 1-19. https://doi.org/10.1016/j.vph.2017.05.005
- Bloomer R.J., Goldfarb A.H., Wideman L., McKenzie M.J., Consitt L.A. Effects of acute aerobic and anaerobic exercise on blood markers of oxidative stress. The Journal of Strength and Conditioning Research. 2005; (19): 276-85. https://doi.org/10.1519/00124278-200505000-00007
- Kalogeris T., Baines C.P., Krenz M., Korthuis R.J. Cell biology of ischemia/reperfusion injury. International Review of Cell and Molecular Biology. 2012; (298): 229-317. https://doi.org/10.1016/B978-0-12-394309-5.00006-7
- Olver T.D., Ferguson B.S., Laughlin M.H. Molecular mechanisms for exercise training-induced changes in vascular structure and function: skeletal muscle, cardiac muscle, and the brain. Progress in Molecular Biology and Translational Science. 2015; (135): 227-57. https://doi.org/10.1016/bs.pmbts.2015.07.017
- Calvert J.W., Condit M.E., Aragon J.P., Nicholson C.K., Moody B.F., Hood R.L. et al. Exercise protects against myocardial ischemia-reperfusion injury via stimulation of beta(3)-adrenergic receptors and increased nitric oxide signaling: role of nitrite and nitrosothiols. Circulation Research. 2011; (108): 1448-58. https://doi.org/10.1161/CIRCRESAHA.111.241117
- Verhaar M.C., Westerweel P.E., van Zonneveld A.J., Rabelink T.J. Free radical production by dysfunctional eNOS. Heart. 2004; (90): 494-5. https://doi.org/10.1136/hrt.2003.029405
- Prior B.M., Yang H.T., Terjung R.L. What makes vessels grow with exercise training? Journal of Applied Physiology. 2004; (97): 1119-28. https://doi.org/10.1152/japplphysiol.00035.2004
- Hoier B., Hellsten Y. Exercise-induced capillary growth in human skeletal muscle and the dynamics of VEGF. Microcirculation. 2014; (21): 301-14. https://doi.org/10.1111/micc.12117
- Cai D., Yuan M., Frantz D.F., Melendez P.A., Hansen L., Lee J. et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nature Medicine. 2005; (11): 183-90. https://doi.org/10.1038/nm1166
- Rogero M.M., Calder P.C. Obesity, inflammation, toll-like receptor 4 and fatty acids. Nutrients. 2018; (10): e432 p. https://doi.org/10.3390/nu10040432
- Liu H.W., Chang S.J. Moderate exercise suppresses NF-kappaB signaling and activates the SIRT1-AMPK-PGC1alpha axis to attenuate muscle loss in diabetic db/db Mice. Frontiers in Physiology. 2018; (9): 636 p. https://doi.org/10.3389/fphys.2018.00636
- Lancaster G.I., Febbraio M.A. The immunomodulating role of exercise in metabolic disease. Trends in Immunology. 2014; (35): 262-9. https://doi.org/10.1016/j.it.2014.02.008
- Creber R.M.M., Lee C.S., Margulies K., Ellis S., Riegel B. Exercise in heart failure and patterns of inflammation and myocardial stress over time. Circulation. 2014; (130): A11902 p.
- Hoffmann C., Weigert C. Skeletal muscle as an endocrine organ: the role of myokines in exercise adaptathions. Cold Spring Harbor Perspectives in Medicine. 2017; (7): a029793. https://doi.org/10.1101/cshperspect.a029793
- Schnyder S., Handschin C. Skeletal muscle as an endocrine organ: PGC-1alpha, myokines and exercise. Bone. 2015; (80): 115-25. https://doi.org/10.1016/j.bone.2015.02.008
- Mathur N., Pedersen B.K. Exercise as a mean to control low-grade systemic inflammation. Mediators of Inflammation. 2008; (2008): 109502 p. https://doi.org/10.1155/2008/1
- Ellingsgaard H., Hauselmann I., Schuler B., Habib A.M., Baggio L.L., Meier D.T. et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nature Medicine. 2011; (17): 1481-9. https://doi.org/10.1038/nm.2513
- Keller C., Hellsten Y., Steensberg A., Pedersen B.K. Differential regulation of IL-6 and TNF-alpha via calcineurin in human skeletal muscle cells. Cytokine. 2006; (36): 141-7. https://doi.org/10.1016/j.cyto.2006.10.014
- Seldin M.M., Peterson J.M., Byerly M.S., Wei Z., Wong G.W. Myonectin (CTRP15), a novel myokine that links skeletal muscle to systemic lipid homeostasis. The Journal of Biological Chemistry. 2012; (287): 11968-80. https://doi.org/10.1016/j.cyto.2006.10.01410.1074/jbc.M111.336834
- Oshima Y., Ouchi N., Sato K., Izumiya Y., Pimentel D.R., Walsh K. Follistatin-like 1 is an Akt-regulated cardioprotective factor that is secreted by the heart. Circulation. 2008; (117): 3099-108. https://doi.org/10.1161/CIRCULATIONAHA.108.767673
- Xi Y., Gong D.W., Tian Z.J. FSTL1 as a Potential mediator of exercise-induced cardioprotection in post-myocardial infarction rats. Scientific Reports. 2016; (6): 32424 p. https://doi.org/10.1038/srep32424
- Kuang X.L., Zhao X.M., Xu H.F., Shi Y.Y., Deng J.B., Sun G.T. Spatio-temporal expression of a novel neuron-derived neurotrophic factor (NDNF) in mouse brains during development. BMC Neuroscience. 2010; (11): 137 p. https://doi.org/10.1186/1471-2202-11-137
- Matthews V.B., Astrom M.B., Chan M.H.S., Bruce C.R., Krabbe K.S., Prelovsek O. et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia. 2009; (52): 1409-18. https://doi.org/10.1007/s00125-009-1364-1
- Anderson L., Thompson D.R., Oldridge N., Zwisler A.D., Rees K., Martin N. et al. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database of Systematic Reviews. 2016; (1): CD001800. https://doi.org/10.1002/14651858.CD001800.pub3

Контент доступен под лицензией Creative Commons Attribution 4.0 License.
©
Эта статья открытого доступа по лицензии CC BY 4.0. Издательство: ФГБУ «НМИЦ РК» Минздрава России.