Оригинальная статья

Метеорологические параметры и риск развития гипертонического криза: лонгитюдное исследование для разработки модели прогнозирования



1 ORCIDФесюн А.Д., 1 ORCID Юрова О.В., 1 ORCID Гришечкина И.А., 1 ORCIDЯковлев М.Ю., 1 ORCIDНикитин М.В., 1 ORCIDКнязева Т.А., 1 ORCIDВальцева Е.А.

1ФГБУ «Национальный медицинский исследовательский центр реабилитации и курортологии» Минздрава России, Москва, Россия


РЕЗЮМЕ

ВВЕДЕНИЕ. Включение климатотерапии в состав санаторно-курортного лечения артериальной гипертензии (АГ) в различных местностях, обладающих характеристиками природного лечебного ресурса, может дать положительный эффект в целевых группах при условии предотвращении возникновения метеопатических реакций, в том числе гипертонического криза (ГК).
Влияние природных лечебных факторов на организм человека изучалось и ранее, но использование современных цифровых технологий построения моделей риска возникновения ГК позволяет точно прогнозировать и своевременно предотвращать ГК в неблагоприятные погодные периоды.
ЦЕЛЬ. На основе анализа временных рядов общедоступных метеорологических данных построить математическую модель для прогнозирования периодов высокого риска ГК на основе влияния климатических факторов на пациентов с АГ. Данная модель позволит выявить неблагоприятные периоды пребывания пациентов с АГ в санаторно-курортных учреждениях в течение года, что позволит своевременно проводить лечебно-профилактические мероприятия по предупреждению ГК в эти периоды.
МАТЕРИАЛ И МЕТОДЫ. Лонгитюдное следование проводилось в течение 22 месяцев, с 1 января 2019 г. по 31 октября 2020 г., в Геленджике и Новороссийске — городах, расположенных на Черноморском побережье Северного Кавказа. В этих регионах преобладает сухой субтропический климат. Метеорологические данные были получены с метеостанций городов Геленджик и Новороссийск. Данные о вызовах скорой помощи также были собраны в Геленджике (12 268 вызовов) и Новороссийске (12 226 вызовов), в результате чего суммарно было изучено 24 494 вызова скорой помощи. Математическая модель была построена с использованием метода максимального правдоподобия посредством нелинейной логитрегрессии. Ключевыми факто- рами для модели стали основные показатели климата и геомагнитной обстановки. Метод логистической регрессии показал чувствительность 56,0 % и специфичность 77,3 % с общей точностью 76,0 %.
РЕЗУЛЬТАТЫ. На основании разработанной прогностической модели в зимний сезон приходится не более 75,0 % дней, связан- ных с низким риском ГК, число которых снижается до 59,0 % в весенний период. Однако доля увеличивается до 89,0 % летом и достигает 77,0 % осенью. Проверки адекватности модели показали высокую степень релевантности с K (качество модели) в диапазоне от +0,64 до −0,117 и p > 0,3.
ЗАКЛЮЧЕНИЕ. Разработанные модели логистической регрессии обеспечивают более точные расчеты индивидуальных рисков развития осложнений АГ и дают возможность сформулировать индивидуальные стратегии для пациентов. Эти модели вносят свой вклад в область климатотерапии и улучшают понимание влияния климатических факторов на пациентов с АГ, облегчая целенаправленные вмешательства и улучшая лечение ГК.

КЛЮЧЕВЫЕ СЛОВА: сезонность, функция максимального правдоподобия, климатотерапия, логистические модели, по- года, артериальная гипертония, прогноз, санаторно-курортное лечение, метеорологические факторы

Источник финансирования: Авторы заявляют об отсутствии финансирования при проведении исследования.

Конфликт интересов: Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Для цитирования: Fesyun A.D., Yurova O.V., Grishechkina I.A., Yakovlev M.Yu., Nikitin M.V., Knjazeva T.A., Valtseva E.A. Meteorological parameters and hypertensive crisis risk: a longitudinal study for developing prediction model. Bulletin of Rehabilitation Medicine. 2023; 22(5): 54-65. https://doi.org/10.38025/2078-1962-2023-22-5-54-65 

Для корреспонденции: Гришечкина Ирина Александровна, E-mail: grishechkinaia@nmicrk.ru



Список литературы:

  1. Balanova Y.A., Shalnova S.A., Imatva A.E. et al. Prevalence, Awareness, Treatment and Control of Hypertension in Russian Federation (Data of Observational ESSE-RF-2 Study). Rational Pharmacotherapy in Cardiology. 2019; 15(4): 450–466. https://doi.org/10.20996/1819-6446-2019-15-4-450- 466 (In Russ.).
  2. Formenov A.D., Miroshnikov A.B., Smolenskiy A.V. Effect of Cardiorehabilitation on Serum Lipid Profile in Hypertensive Patients: an Integrative Review. Bulletin of Rehabilitation Medicine. 2021; 20(3): 93–103. https://doi.org/10.38025/2078-1962-2021-20-3-97-103 (In Russ.).
  3. Korennova O.Yu., Druk I.V., Podolnaya S.P. et al. Efficacy of Follow-up Monitoring for Patients with Very High Cardiovascular Risk in the Omsk Region. Bulletin of Rehabilitation Medicine. 2022; 21(3): 121–128. https://doi.org/10.38025/2078-1962-2022-21-3-121-128 (In Russ.).
  4. Balanova Yu.A., Kutsenko V.A., Shalnova S.A. et al. Correlation of excess salt intake identified by the survey with urine sodium level and blood pressure: data of ESSE-RF study. Russian Journal of Cardiology. 2020; 25(6): 3791. https://doi.org/10.15829/1560-4071-2020-3791 (In Russ.).
  5. Shlyahto E.V. Kardiologiya: nacional'noe rukovoodstvo. Moscow. GEOTAR-Media. 2015: 800 p. (In Russ.).
  6. Arefin A., Nabi N., Islam M.T., Islam S. Influences of weather-related parameters on the spread of Covid-19 pandemic — The scenario of Bangladesh. Urban Climate. 2021; (38): 100903. https://doi.org/10.1016/j.uclim.2021.100903
  7. Calkins M.M., Isaksen T.B., Stubbs B.A. et al. Impacts of extreme heat on emergency medical service calls in King County, Washington, 2007–2012: relative risk and time series analyses of basic and advanced life support. BMC. Environmental Health. 2016; (15): 13. https://doi.org/10.1186/s12940-016-0109-0
  8. Zhao Q., Guo Y., Ye T. et al. Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study. The Lancet Planetary Health. 2021; (5): e415–e25.
  9. Uyanaeva A.I., Pogonchenkona I.V., Tupitsyna Yu.Yu. et al. Modern medical and meteorological assessment of Moscow weather and effectiveness of non-drug methods of increased meteosensitivity correction in patients with joint diseases. Voprosy kurortologii, fizioterapii, i lechebnoi fizicheskoi kultury. 2020; 97(5): 60–69. https://doi.org/10.17116/kurort20209705160 (In Russ.).
  10. Yakovlev M.Yu., Bobrovnickij I.P., Rakhmanin Yu.A. Basic principles for the development of a mathematical model of meteopathic reactions of the body to the impact of unfavorable weather conditions and recommendations for its use in personalized prevention of meteorological diseases of the circulatory system. Voprosy kurortologii, fizioterapii, i lechebnoi fizicheskoi kultury. 2016; 93(2–2): 185–186. (In Russ.).
  11. Fesyun A.D., Yakovlev M.Yu., Valtseva E.A. et al. Development of meteopathic reactions in patients treated at Health Resorts: a Cross-Sectional Study of 735 Patients. Bulletin of Rehabilitation Medicine. 2023; 22(1): 36–45. https://doi.org/10.38025/2078-1962-2023-22-1-36-45 (In Russ.).
  12. Lobanov A.A., Andronov S.V., Fesyun A.D. et al. Study on Patient Adaptation in Sanatoriums. Bulletin of Rehabilitation Medicine. 2021; 20(3): 26–36. https://doi.org/10.38025/2078-1962-2021-20-3-26-36 (In Russ.).
  13. Podpalov V.P., Sivakov V.P., Deyev A.D. Predicting the development of arterial hypertension: nonlinear risk models. Bulletin of Vitebsk State Medical University. 2004; 3(2): 46–53. (In Russ.).
  14. Borovikov V.P. Statistica: The art of data analysis on a computer. St. Petersburg. Piter. 2001: 656 p. (In Russ.).
  15. Hasmer D.W.Jr., Lemeshov S. Applied logistic regression. New York, John Wiley & Sons Ins. 1989: 528p.
  16. Petri A., Sabin C. Medical Statistics at a Glance. New York, John Wiley & Sons Ins. 2009: 208 p. (In Russ.).
  17. Ahlbom A., Norell S. Introduction to Modern Epidemiology. Stockholm: Institute of Environmental Medicine. 1990: 768 p.
  18. Zueva L.P., Yafayev R.H. Epidemiologiya: Uchebnik. St. Petersburg. Foliant. 2005: 752 p. (In Russ.).
  19. Orlov A.I. Ekonometrika: uchebnoe posobie dlya vuzov. Moscow. Examen. 2002: 576 р. (In Russ.).
  20. Spiridonova N.V., Balter R.B., Kazakova A.V. Predicting the development of gestosis using multivariate mathematical analysis. Vestnik SamGU. 2007; (52): 264–276 (In Russ.).
  21. Andronov S.V., Lobanov A.A., Popov A.I. Predicting the development of arterial hypertension in migrants in the Yamalo-Nenets Autonomous Okrug.
  22. Scientific Bulletin of the YNAO. 2015; 89(4): 14–19. (In Russ.). 22. Gagarinova I.V., Popov A.I., Andronov S.V., Lobanov A.A. Tobacco smoking as a risk factor for hypertension in the Arctic region. Scientific Bulletin of the YNAO. 2015; 89(4): 32–35. (In Russ.).
  23. Andronov S.V., Lobanov A.A., Bichkayeva F.A. et al. Traditional nutrition and demography in the Arctic zone of Western Siberia. Voprosy pitaniya [Problems of Nutrition]. 2020; 89(5): 69–79. https://doi.org/10.24411/0042-8833-2020-10067 (In Russ.).
  24. Zenchenko T.A. Methodology for analyzing time series of data in a comprehensive assessment of meteorological and magnetic sensitivity of the human body. Ekologiya cheloveka (Human Ecology). 2010; (2): 3–11. (In Russ.).
  25. Rebrova O.Yu. Statistical analysis of medical data. Moscowю Media-Sphereю 2002: 312 p. (In Russ.).
  26. Hess J.J., Heilpern K.L., Davis T.E., Frumkin H. Climate Change and Emergency Medicine: Impacts and Opportunities. Academic Emergency Medicine. 2009; 6(8): 782–794. https://doi.org/10.1111/j.1553-2712.2009.00469.x
  27. Voronin N.M. Osnovy biologicheskoj i medicinskoj klimatologii. Moscow. Medicine. 1981: 352 p. (In Russ.).
  28. Fesyun A.D. Sanatorno-kurortnoe lechenie: Nauchno-prakticheskoe rukovodstvo dlya vrachej. Moscow. OOO «Renovaciya». 2022: 999 p. (In Russ.).
  29. Chen T-H., Du X.L., Chan W., Zhang K. Impact of cold weather on emergency hospital admission in Texas, 2004-2013. Environmental Research. 2019; (169): 139–146. https://doi.org/10.1016/j.envres.2018.10.031
  30. Masselot P., Chebana F., Ouarda T.B.M.J. et al. A new look at weather-related health impacts through functional regression. Scientific Reports. 2018; (8): 15241. https://doi.org/10.1038/s41598-018-33626-1
  31. Guo Y., Ma Y., Ji J. et al. The relationship between extreme temperature and emergency incidences: a time series analysis in Shenzhen, China. Environmental Science and Pollution Research. 2018; 25(36): 36239–36255. https://doi.org/10.1007/s11356-018-3426-8
  32. Krivonogova E.V., Krivonogova O.V., Poskotinova L.V. Individual-Typological Features of the Reactivity of EEG Rhythms, Cardiovascular System and Lactoferrin Level in the Conditions of General Air Cooling of a Person. Human Physiology. 2021; (47): 533–541. https://doi.org/10.1134/S036211972104006X (In Russ.).
  33.  Martinaituene D., Rauskauskiene N. Weather-related subjective well-being in patients with coronary artery disease. International Journal of Biometeorology. 2021; 65(8): 1299–1312. https://doi.org/10.1007/s00484-020-01942-9
  34. Veenema T.G., Thornton C.P., Lavin R.P. et al. Climate Change-Related Water Disasters' Impact on Population Health. Journal of Nursing Scholarship. 2017; 49(6): 625–634. https://doi.org/10.1111/jnu.12328
  35. Gao J., Sun Y., Lu Y., Li L. Impact of Ambient Humidity on Child Health: A Systematic Review. PLoS ONE. 2014; 9(12): e112508. https://doi.org/10.1371/journal.pone.0112508
  36. Jalaludin B., Xu Z., FitzGerald G. et al. Impact of heatwave on mortality under different heatwave definitions: a systematic review and meta-analysis. Environment International. 2016; (89-90): 193–203. https://doi.org/10.1016/j.envint.2016.02.007
  37. Saltykova M.M., Bobrovnitskii I.P., Yakovlev M.Yu. et al. A new approach to the analysis of the influence of weather conditions on the human organism. Hygiene and Sanitation. 2018; 97(11): 1038–42. https://doi.org/10.47470/0016-9900-2018-97-11-1038-42 (In Russ.).
  38. Barnett A.G., Dobson A.J., McElduff P. et al. WHO MONICA Project. Сold periods and coronary events: an analysis of populations worldwide. Journal of Epidemiology and Community Health. 2005; (59): 551–557. https://doi.org/10.1136/jech.2004.028514
  39. Analitis K., Katsouyanni A., Biggeri M. et al. Effects of Cold Weather on Mortality: Results from 15 European Cities Within the PHEWE Project. American Journal of Epidemiology. 2008; 168(12): 1397–1408. https://doi.org/10.1093/aje/kwn266
  40. Krivonogova E.V., Demin D.B., Krivonogova O.V., Poskotinova L.V. Varianty izmeneniya pokazatelej serdechno-sosudistoj sistemy i bioelektricheskoj aktivnosti golovnogo mozga v otvet na holod u molodyh lyudej. Ekologiya cheloveka (Human Ecology). 2011; (11): 20–26 (In Russ.).
  41. Polyakova E.V., Mal'ceva E.A., Poskotinova L.V. The impact of space weather factors on the parameters of the cardiovascular system in the youth of Arkhangelsk. International Journal of Applied and Fundamental Research. 2015; (10): 282–285 (In Russ.).
  42. Zenchenko T.A., Krivonogova E.V., Poskotinova L.V. et al. Sinhronizaciya kolebanij reologicheskih pokazatelej krovi s geomagnitnymi pul'saciyami RS5 [Synchronization of fluctuations in blood rheological parameters with geomagnetic pulsations of PC5]. In: Materialy I Mezhdunarodnoj nauchno- prakticheskoj konferencii, posvyashchennoj sohraneniyu tvorcheskogo naslediya i razvitiyu idej A.L. Chizhevskogo. Kaluga. Russian. 2017: 91–93. (In Russ.).
  43. Dasgupta K., Chan С., Da Costa D. et al. Walking behaviour and glycemic control in type 2 diabetes: seasonal and gender Differences-Study design and methods. BMC. Cardiovascular Diabetology. 2007; (6). https://doi.org/10.1186/1475-2840-6-1
  44. Vencloviene J., Babarskiene R.M., Dobozinskas P. et al. Effects of weather and heliophysical conditions on emergency ambulance calls for elevated arterial blood pressure. International Journal of Environmental Research and Public Health. 2015; 12(3): 2622–38. https://doi.org/10.3390/ijerph120302622
  45. Gasparrini A., Guo Yu., Hashizume M. et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. The Lancet. 2015; (386): 369–375. https://doi.org/10.1016/S0140-6736(14)62114-0
  46. Zenchenko T., Breus T. Potential impacts of weather and climate slow variations on human health and wellness. Current perspectives. Geosphere Research. 2020: 80–96. https://doi.org/10.17223/25421379/16/7 (In Russ.).
  47. Revich B.A., Shaposhnikov D.A., Anisimov O.A., Belolutskaia M.A. Heat waves and cold spells in three arctic and subarctic cities as mortality risk factors. Hygiene and Sanitation. 2018; 97(9): 791–798. https://doi.org/10.18821/0016-9900-2018-97-9-791-798 (In Russ.).
  48. Sun X., Yang M., Zhou X. et al. Effects of temperature and heat waves on emergency department visits and emergency ambulance dispatches in Pudong new area, China: a time series analysis. Environmental Health. 2014; (13). https://doi.org/10.1186/1476-069X-13-76
  49. Tong S., Wang X.Yu., FitzGerald G. et al. Development of health risk-based metrics for defining a heatwave: a time series study in Brisbane, Australia. BMC Public Health. 2014; (14). https://doi.org/10.1186/1471-2458-14-435
  50. Lyubchik V.N. Vremennye granicy sezonov evpatorijskogo kurorta. Herald of Physiotherapy and Health Resort Therapy. 2016; 3(22): 54–61. (In Russ.).
  51. Shaposhnikov D., Revich B., Gurfinkel Y., Naumova E. The influence of meteorological and geomagnetic factors on acute myocardial infarction and brain stroke in Moscow, Russia. International Journal of Biometeorology. 2014; (58): 799–808. https://doi.org/10.1007/s00484-013-0660-0 (In Russ.).
  52. Hotz C.I., Hajat S. The Effects of Temperature on Accident and Emergency Department Attendances in London: A Time-Series Regression Analysis. International Journal of Environmental Research and Public Health. 2020; 17(6): 1957. https://doi.org/10.3390/ijerph17061957
  53. Boytsov S.A., Lukyanov M.M., Kontsevaya A.V. et al. Features of seasonal mortality of the population from diseases of the circulatory system in winter in the regions of the Russian Federation with different climatic and geographic characteristics. Rational Pharmacotherapy in Cardiology. 2013; 9(6): 627–632 (In Russ.).
  54. Yarosch А.М. Primorskiye kurorti Кrima. Sezonniye vozmozchnosti klimatoreabilitatsii bolynich lyudey na primorskich kurortach Кrima. Herald of Physiotherapy and Health Resort Therapy. 2009; 2(15): 11–14 (In Russ.).
  55. Lyubchik V.N., Polyakova G.L. Velichina osnovnich meteorologicheskich pokazateley letnich mesyatsev goda na Еvpatoriyskom kurorte v razniye sroki nablyudeniya za period 2002-2012 gg. Herald of Physiotherapy and Health Resort Therapy. 2013; 4(19): 39–41 (In Russ.). 



Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.

©

Эта статья открытого доступа по лицензии CC BY 4.0. Издательство: ФГБУ «НМИЦ РК» Минздрава России.
This is an open article under the CC BY 4.0 license. Published by the National Medical Research Center for Rehabilitation and Balneology.


РЕКЛАМА