Выпуск 23-2, 2024
Обзорная статья
Современные методы реабилитации пациентов после хирургического лечения синдрома карпального канала: обзор литературы
1 Гребень Т.Н., 1
Фесюн А.Д., 2
Гребень А.И.
1ФГБУ «Национальный медицинский исследовательский центр реабилитации и курортологии» Минздрава России,
Москва, Россия
2
ГБУЗ города Москвы «Городская клиническая больница № 29 им. Н.Э. Баумана» Департамента здравоохранения
города Москвы, Москва, Россия
РЕЗЮМЕ
ВВЕДЕНИЕ. Синдром карпального канала (СКК) является одним из наиболее распространенных типов туннельных синдромов и занимает шестое место в реестре всех профессиональных заболеваний. Высокий интерес к изучению данной патологии и особенностям его послеоперационного ведения обусловлен широкой распространенностью заболевания, социальной значимостью, зачастую неудовлетворительными результатами хирургического лечения и длительным периодом восстановления функции кисти. Цель настоящей работы заключалась в изучении современных концепций послеоперационной реабилитации пациентов c СКК.
МЕТОДОЛОГИЯ ПОИСКА ИСТОЧНИКОВ. При подготовке обзора использовались открытые электронные базы данных научной литературы: PubMed, ClinicalTrials.gov, eLibrary.ru. Поиск данных медицинской литературы произведен по следующим ключевым словам: «реабилитация», «синдром карпального канала», «синдром запястного канала», «срединный нерв», «компрессионная нейропатия». Критериями включения в анализ литературных источников являлись рандомизированные контролируемые клинические исследования, систематические обзоры и метаанализы. Предпочтение отдавалось публикациям за последние 5–10 лет.
ОБСУЖДЕНИЕ. Представлены наиболее часто применяющиеся методики в рамках послеоперационного ведения пациентов с СКК, обсуждены механизмы их действия и перспективы развития данной области. Рассмотрены следующие способы реабилитации: широкий спектр методов аппаратной физиотерапии, мануальная терапия, кинезиотейпирование, лимфодренажный массаж, а также возможности лечебной физкультуры и роботизированной механотерапии. Несмотря на высокий уровень развития медицины, важной проблемой остается длительный процесс реабилитации данных пациентов, при этом клиническая эффективность большего спектра предлагаемых методик по-прежнему остается малоизученной. Одними из наиболее перспективных методов реабилитации пациентов после оперативного лечения по поводу СКК являются методы роботизированной механотерапии и экстракорпоральной ударно-волновой терапии.
ЗАКЛЮЧЕНИЕ. Для эффективного применения описанных техник в рамках послеоперационной реабилитации пациентов с СКК в клинической практике необходимы дальнейшие исследования и изучение их долгосрочных эффектов, а также сравнение их эффективности с целью наиболее полного и быстрого восстановления функции пораженной кисти.
КЛЮЧЕВЫЕ СЛОВА: реабилитация, синдром карпального канала, срединный нерв, компрессионная нейропатия, травматология, ударно-волновая терапия, роботизированная механотерапия
ИСТОЧНИК ФИНАНСИРОВАНИЯ: Авторы заявляют об отсутствии финансирования при проведении исследования.
КОНФЛИКТ ИНТЕРЕСОВ: Фесюн А.Д. — главный редактор журнала «Вестник восстановительной медицины». Остальные авторы заявляют об отсутствии явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи
ДЛЯ ЦИТИРОВАНИЯ: Гребень Т.Н., Фесюн А.Д., Гребень А.И. Современные методы реабилитации пациентов после хирургического лечения синдрома карпального канала: обзор литературы. Вестник восстановительной медицины. 2024; 23(2):34-41. https://doi.org/10.38025/2078-1962-2024-23-2-34-41 [Greben T.N., Fesyun A.D., Greben A.I. Сurrent Medical Rehabilitation Methods for Patients after Carpal Tunnel Syndrome Surgical Treatment: a Review. Bulletin of Rehabilitation Medicine. 2024; 23(2):34-41. https://doi.org/10.38025/2078-1962-2024-23-2-34-41 (In Russ.).
ДЛЯ КОРРЕСПОНДЕНЦИИ:
Гребень Татьяна Николаевна, E-mail: grebentn@nmicrk.ru
Список литературы:
- Малецкий Э.Ю., Короткевич М.М., Бутова А.В. и др. Измерение периферических нервов: сопоставление ультразвуковых, магнитно-резонансных и интраоперационных данных. Медицинская визуализация. 2015; (2): 78–86. [Maletskiy E.Yu., Korotkevich M.M., Butova A.V., et al. Measurements of Peripheral Nerves: Comparison of Ultrasound, MRI and Direct Intraoperative Data. Medical Visualization. 2015; (2): 78–86 (In Russ.).]
- Эристов А.Н., Щукина Т.В., Федоров В.Н. и др. Анализ хирургического лечения с применением открытого доступа в зависимости от длительности заболеваний и сопутствующих нозологий. Здравоохранение Чувашии. 2023; (2): 52–62. https://doi.org/10.25589/GIDUV.2023.53.44.003 [Eristov A.N., Shchukina T.V., Fedorov V.N., et al. Analysis of open-access surgical treatment depending on the duration of disease and concomitant nosologies. Healthcare of Chuvashia. 2023; (2): 52–62. https://doi.org/10.25589/GIDUV.2023.53.44.003 (In Russ.).]
- Gerger H., Macri E.M., Jackson J.A., et al. Physical and psychosocial work-related exposures and the incidence of carpal tunnel syndrome: A systematic review of prospective studies. Applied ergonomics. 2024; (117): 104211. https://doi.org/10.1016/j.apergo.2023.104211
- Самарцев И.Н., Рашидов Н.А., Живолупов С.А., Воробьева М.Н. Современная стратегия дифференциальной диагностики и лечения компрессионно-ишемической невропатии срединного нерва на уровне карпального канала (клиническое исследование). Consilium Medicum. 2017; (19) (2.2. Неврология и Ревматология): 58–66. [Samartsev I.N., Rashidov N.A., Zhivolupov S.A., Vorobieva M.N. Contemporary strategy of differential diagnosis and treatment of carpal tunnel syndrome (clinical study). Consilium Medicum. 2017; (19) (2.2. Neurology and Rheumatology): 58–66 (In Russ.).]
- Zhang L., Yang T., Pang L., et al. Effects of Extracorporeal Shock Wave Therapy in Patients with Mild-to-Moderate Carpal Tunnel Syndrome: An Updated Systematic Review with Meta-Analysis. Journal of clinical medicine. 2023; 12(23): 7363. https://doi.org/10.3390/jcm12237363
- Гильвег А.С., Парфенов В.А., Евзиков Г.Ю. Ближайшие и отдаленные результаты декомпрессии срединного нерва при синдроме запястного канала. Неврология, нейропсихиатрия, психосоматика. 2018; 10(3): 79–85. https://doi.org/10.14412/2074-2711-2018-3-79-85 [Gilveg A.S., Parfenov V.A., Evzikov G.Yu. Median nerve decompression in carpal tunnel syndrome: short- and long-term results. Neurology, neuropsychiatry, psychosomatics. 2018; 10(3): 79–85. https://doi.org/10.14412/2074-2711-2018-3-79-85 (In Russ.).]
- Lusa V., Karjalainen T.V., Pääkkönen M., et al. Surgical versus non-surgical treatment for carpal tunnel syndrome. The Cochrane database of systematic reviews. 2024; 1(1): CD001552. https://doi.org/10.1002/14651858.CD001552.pub3
- Томова Ф.М., Долгова И.Н., Карпов С.М. Синдром запястного канала. Международный научно-исследовательский журнал. 2013; 12(19): 63–64. [Tomova F.M., Dolgova I.N., Karpov S.M. Carpal Tunnel Syndrome (CTS). International Research Journal. 2013; 12(19): 63–64 (In Russ.).]
- Пизова Н.В. Туннельные синдромы запястного и кубитального каналов как наиболее распространенные варианты компрессионных невропатий верхних конечностей. Медицинский совет. 2020; (19): 52–60. https://doi.org/10.21518/2079-701X-2020-19-52-60 [Pizova N.V. Carpal and cubital tunnel syndromes as the most common variants of upper extremity compression neuropathies. Meditsinskiy sovet = Medical Council. 2020; (19): 52–60. https://doi.org/10.21518/2079-701X-2020-19-52-60 (In Russ.).]
- Семенкин О.М., Измалков С.Н., Братийчук А.Н. и др. Результаты оперативного лечения пациентов с синдромом запястного канала в зависимости от степени выраженности заболевания. Гений ортопедии. 2021; 27(1): 24–31. https://doi.org/10.18019/1028-4427-2021-27-1-24-31 [Semenkin O.M., Izmalkov S.N., Bratiichuk A.N., et al. Results of surgical treatment of patients with carpal tunnel syndrome depending on the severity of the disease. Genij Ortopedii. 2021; 27(1): 24–31. ttps://doi.org/10.18019/1028-4427-2021-27-1-24-31 (In Russ.).]
- Богов А.А. (мл.), Масгутов Р.Ф., Ханнанова И.Г. и др. Синдром запястного (карпального) канала. Практическая медицина. 2014; 80(4): 35–40. [Bogov A.A. (Jr.), Masgutov R.F, Khannanova I.G. Carpal canal syndrome. Practical medicine. 2014; 80(4): 35–40 (In Russ.).]
- Заболотских Н.В., Брилева Е.С., Курзанов А.Н. и др. Современные методы диагностики синдрома запястного канала. Кубанский научный медицинский вестник. 2015; 154(5): 132–136. [Zabolotskih N.V., Brileva E.S., Kurzanov A.N., et al. Modern methods of diagnosis of carpal tunnel syndrome. Kuban Scientifi c Medical Bulletin. 2015; 154(5): 132–136 (In Russ.).]
- Юсупова Д.Г., Супонева Н.А., Зимин А.А. и др. Валидация Бостонского опросника по оценке карпального туннельного синдрома (Boston Carpal Tunnel Questionnaire) в России. Нервно-мышечные болезни. 2018; 8(1): 38–45. https://doi.org/10.17650/2222-8721-2018-8-1-38-45 [Yusupova D.G., Suponeva N.A., Zimin A.A., et al. Validation of the Boston Carpal Tunnel Questionnaire in Russia. Nervnomyshechnye bolezni = Neuromuscular Diseases. 2018; 8(1): 38–45. https://doi.org/10.17650/2222-8721-2018-8-1-38-45 (In Russ.).]
- Яриков А.В., Туткин А.В., Бояршинов А.А. и др. Карпальный туннельный синдром: клиника, диагностика и современные подходы к лечению (краткий обзор). Медицинский альманах. 2020; (3): 64. [Yarikov A.V., Tutkin A.V., Boyarshinov A.A., et al. Carpal tunnel syndrome: clinic, diagnosis and modern approaches to treatment (brief review). Medical almanac. 2020; (3): 64 (In Russ.).]
- Genova A., Dix O., Saefan A., Thakur M., Hassan A. Carpal Tunnel Syndrome: a review of literature. Cureus. 2020; 12(3): e7333. https://doi.org/10.7759/cureus.7333
- Williamson E.R., Vasquez Montes D., Melamed E. Multistate comparison of cost, trends, and complications in open versus endoscopic carpal tunnel release. Hand (New York, N.Y.). 2021; 16(1): 25–31. https://doi.org/10.1177/1558944719837020
- Ходорковский М.А., Скорынин О.С., Старченков К.Н. и др. Синдром запястного канала: все ли проблемы решены? Вопросы реконструктивной и пластической хирургии. 2018; 2(65): 27–33. [Khodorkovsky M.A., Skorynin O.S., Starchenkov K.N., et al. Carpal tunnel syndrome: are all problems solved? Issues of reconstructive and plastic surgery. 2018; 2(65): 27–33 (In Russ.)]
- Байтингер А.В., Черданцев Д.В., Рыбаков В.Е. Сравнительный анализ эффективности открытой и эндоскопической декомпрессии срединного нерва при первичном синдроме карпального канала. Вопросы реконструктивной и пластической хирургии. 2019; 22(2): 71–78. https://doi.org/10.17223/1814147/69/09. [Baytinger A.V., Cherdancev D.V., Rybakov V.E. Clinical anatomy of the carpal tunnel in primary compression of the median nerve (carpal syndrome). Issues of Reconstructive and Plastic Surgery. 2019; 22(2): 71–78. https://doi.org/10.17223/1814147/69/09 (In Russ.)]
- Малецкий Э.Ю., Александров Н.Ю., Розенгауз Е.В. и др. Каскадное утолщение нервов в многоуровневых туннелях. Ультразвуковая и функциональная диагностика. 2017; (1): 65–78. [Maletskiy E.Yu., Alexandrov N.Yu., Rozengauz E.V. Cascade Thickening of Nerves in Multilevel Tunnels. Ultrasound and Functional Diagnostics. 2017; (1): 65–78 (In Russ.).]
- Asghar A., Naaz S., Ansari S., et al. The cross-sectional morphology of median nerve in carpal tunnel of healthy, adult population: A systematic review and meta-analysis. Morphologie. 2023; 107(356): 99–115. https://doi.org/10.1016/j.morpho.2022.05.005
- Салтыкова В.Г., Митькова М. Д. Роль эхографии в исследовании периферических нервов конечностей. Ультразвуковая и функциональная диагностика. 2011; (3): 93–106. [Saltykova V.G., Mitkova M.D. Ultrasound Diagnostics in Examination of Extremities Peripheral Nerves. Ultrasound and Functional Diagnostics. 2011; (3): 93–106 (In Russ.).]
- Gonzalez N.L., Hobson-Webb L.D. Neuromuscular ultrasound in clinical practice: a review. Clinical neurophysiology practice. 2019; (4): 148–163. https://doi.org/10.1016/j.cnp.2019.04.006
- Carroll A.S., Simon N.G. Current and future applications of ultrasound imaging in peripheral nerve disorders. World journal of radiology. 2020; 12 (6): 101–129. https://doi.org/10.4329/wjr.v12.i6.101
- Paluch L., Pietruski P., Walecki J., Noszczyk B.H. Wrist to forearm ratio as a median nerve shear wave elastography test in carpal tunnel syndrome diagnosis. Journal of plastic, reconstructive & aesthetic surgery. 2018; 71(8): 1146–1152. https://doi.org/10.1016/j.bjps.2018.03.022
- Sonofuchi K., Hatta T., Goto H. Ultrasonographic measurement of the median nerve transverse diameter at the wrist for diagnosing carpal tunnel syndrome. The journal of hand surgery Asian-Pacific volume. 2021; 26(2): 223–228. https://doi.org/10.1142/S2424835521500223
- Roomizadeh P., Eftekharsadat B., Abedini A., et al. Ultrasonographic assessment of carpal tunnel syndrome severity: a systematic review and meta-analysis. American journal of physical medicine & rehabilitation. 2019; 98(5): 373–381. https://doi.org/10.1097/PHM.0000000000001104
- Azman D., Hrabac P., Demarin V. Use of multiple ultrasonographic parameters in confirmation of carpal tunnel syndrome. Journal of ultrasound in medicine. 2018; 37(4): 879–889. https://doi.org/10.1002/jum.14417
- Yoshii Y., Tung W.L., Yuine H., Ishii T. Postoperative diagnostic potentials of median nerve strain and applied pressure measurement after carpal tunnel release. BMC musculoskeletal disorders. 2020; 21(1): 22. https://doi.org/10.1186/s12891-019-3033-y
- Митьков В.В., Митькова М.Д., Салтыкова В.Г. Микроультразвуковое исследование — новые технологии, новые возможности. Ультразвуковая и функциональная диагностика. 2021; (1): 89–99. https://doi.org/10.24835/1607-0771-2021-1-89-99 [Mitkov V.V., Mitkova M.D., Saltykova V.G. Microultrasound — new technologies, new capabilities. Ultrasound & Functional Diagnostics. 2021; (1): 89–99. https://doi.org/10.24835/1607-0771-2021-1-89-99 (In Russ.).]
- Cass S.P. Ultrasound-Guided Nerve Hydrodissection: What Is it? A Review of the Literature. Current sports medicine reports. 2016; 15(1): 20–22. https://doi.org/10.1249/JSR.0000000000000226
- Sousa L.H.A., de O Costa C., Novak E.M., Giostri G.S. Complex Regional Pain Syndrome after Carpal Tunnel Syndrome Surgery: A Systematic Review. Neurology India. 2022; 70(2): 491–503. https://doi.org/10.4103/0028-3886.344616
- Савицкая Н.Г., Павлов Э.В., Щербакова Н.И., Янкевич Д.С. Электронейромиография в диагностике запястного туннельного синдрома. Анналы клинической и экспериментальной неврологии. 2011; 5(2): 40–45. [Savitskaya N.G., Pavlov E.V., Shcherbakova N.I., Yankevich D.S. Electroneuromyography in the diagnosis of carpal tunnel syndrome. Annals of Clinical and Experimental Neurology. 2011; 5(2): 40–45 (In Russ.).]
- Alves M.P.T., Araujo G.C.S. Low‐level laser therapy after carpal tunnel release. Revista Brasileira de Ortopedia 2011; 46(6): 697–701. https://doi.org/10.1016/S2255-4971(15)30327-X
- Alam M., Khan M., Ahmed S.I., et al. Effectiveness of neural mobilization and ultrasound therapy on pain severity in carpal tunnel syndrome. Biomedical Research and Therapy. 2018; 5(4): 2187–2193. https://doi.org/10.15419/bmrat.v5i4.432
- Rayegani S.M., Moradi-Joo M., Raeissadat S.A., et al. Effectiveness of low-level laser therapy compared to ultrasound in patients with carpal tunnel syndrome: A systematic review and meta-analysis. Journal of lasers in medical sciences. 2019; 10(1): 82. https://doi.org/10.15171/jlms.2019.S15
- Gordon T., Amirjani N., Edwards D.C., Chan K.M. Brief post‐surgical electrical stimulation accelerates axon regeneration and muscle reinnervation without affecting the functional measures in carpal tunnel syndrome patients. Experimental Neurology. 2010; 223(1): 192–202. https://doi.org/10.1016/j.expneurol.2009.09.020
- Powell F. Desensitisation techniques: do they reduce scar sensitivity following carpal tunnel release? (A pilot study). Unpublished Masters Thesis. 2003.
- Ayache A., Unglaub F., Tsolakidis S., et al. Revisionseingriffe beim Karpal- und Kubitaltunnelsyndrom revision surgery for carpal and cubital tunnel syndrome. Der Orthopade. 2020; 49(9): 751–761. https://doi.org/10.1007/s00132-020-03969-7
- Burke J., Buchberger D.J., Carey-Loghmani M.T., et al. A pilot study comparing two manual therapy interventions for carpal tunnel syndrome. Journal of manipulative and physiological therapeutics. 2007; 30(1): 50–61. https://doi.org/10.1016/j.jmpt.2006.11.014
- Georgeto S.M., Andraus R.A.C., de Oliveira Júnior E., et al. Bilateral Idiopathic Carpal Tunnel Syndrome: Clinical-Functional Characterization and Efficacy of Two Combined Postoperative Physiotherape. Orthopaedic surgery. 2023; 15(6): 1654–1663. https://doi.org/10.1111/os.13705
- Schleip R., Mechsner F., Zorn A., Klingler W. The bodywide fascial network as a sensory organ for haptic perception. Journal of motor behavior. 2014; 46(3): 191–193. https://doi.org/10.1080/00222895.2014.880306
- Bhojan K., Shanmugam N. Fascial manipulation in the management of carpal tunnel syndrome Journal of Bodywork and Movement Therapies. 2018; 22(4): 862. https://doi.org/10.1016/j.jbmt.2018.09.047
- Kannabiran B., Manimegalai R., Nagarani R. Effectiveness of fascial manipulation on pain, grip strength, and functional performance in chronic lateral epicondylitis patients. Orthopedic & Muscular System: Current Research. 2017; (6): 230. https://doi.org/10.4172/2161-0533.1000230
- Kim J., Sung D.J., Lee J. Therapeutic effectiveness of instrument‐assisted soft tissue mobilization for soft tissue injury: mechanisms and practical application. Journal of exercise rehabilitation. 2017; 13(1): 12–22. https://doi.org/10.12965/jer.1732824.412
- Furia J.P. High-energy extracorporeal shock wave therapy as a treatment for chronic noninsertional Achilles tendinopathy. The American journal of sports medicine. 2008; (36): 502–508. https://doi.org/10.1177/0363546507309674
- Gerdesmeyer L., Frey C., Vester J., et al. Radial extracorporeal shock wave therapy is safe and effective in the treatment of chronic recalcitrant plantar fasciitis: results of a confirmatory randomized placebo-controlled multicenter study. The American journal of sports medicine. 2008; (36): 2100–2109. https://doi.org/10.1177/0363546508324176
- Sabeti-Aschraf M., Dorotka R., Goll A., Trieb K. Extracorporeal shock wave therapy in the treatment of calcific tendinitis of the rotator cuff. The American journal of sports medicine. 2005; (33): 1365–1368. https://doi.org/10.1177/0363546504273052
- Ramon S., Gleitz M., Hernandez L., Romero L.D. Update on the efficacy of extracorporeal shockwave treatment for myofascial pain syndrome and fibromyalgia. International journal of surgery. 2015; (24): 201–206. https://doi.org/10.1016/j.ijsu.2015.08.083
- Habibzadeh A., Mousavi-Khatir R., Saadat P., Javadian Y. The effect of radial shockwave on the median nerve pathway in patients with mild-to-moderate carpal tunnel syndrome: a randomized clinical trial. Journal of Orthopaedic Surgery and Research. 2022; 17(1): 46. https://doi.org/10.1186/s13018-022-02941-9
- Auersperg V., Trieb K. Extracorporeal shock wave therapy: an update. EFORT open reviews. 2020; 5(10): 584–592. https://doi.org/10.1302/2058-5241.5.190067
- Mariotto S., de Prati A., Cavalieri E., et al. Extracorporeal shock wave therapy in inflammatory diseases: Molecular mechanism that triggers anti-inflammatory action. Current medicinal chemistry. 2009; (16): 2366–2372. https://doi.org/10.2174/092986709788682119
- Wu Y.T., Ke M.J., Chou Y.C., et al. Effect of radial shock wave therapy for carpal tunnel syndrome: a prospective randomized, double-blind, placebo-controlled trial. Journal of orthopaedic research. 2016; 34(6): 977–984. https://doi.org/10.1002/jor.23113
- Wang F.S., Wang C.J., Chen Y.J., et al. Ras induction of superoxide activates ERK-dependent angiogenic transcription factor HIF-1 and VEGF-A expression in shock wave-stimulated osteoblasts. The Journal of biological chemistry. 2004; (279): 10331–10337. https://doi.org/10.1074/jbc.M308013200
- Kim J.C., Jung S.H., Lee S.U., Lee S.Y. Effect of extracorporeal shockwave therapy on carpal tunnel syndrome: a systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore). 2019; 98(33): e16870. https://doi.org/10.1097/MD.0000000000016870
- Park H.J., Hong J., Piao Y., et al. Extracorporeal shockwave therapy enhances peripheral nerve remyelination and gait function in a crush model. Advances in clinical and experimental medicine. 2020; 29(7): 819–824. https://doi.org/10.17219/acem/122177
- Ke M.J., Chen L.C., Chou Y.C., et al. The dose-dependent efficiency of radial shock wave therapy for patients with carpal tunnel syndrome: A prospective, randomized, single-blind, placebo-controlled trial. Scientific reports. 2016; (6): 38344. https://doi.org/10.1038/srep38344
- Notarnicola A., Maccagnano G., Tafuri S., et al. Comparison of shock wave therapy and nutraceutical composed of Echinacea angustifolia, alpha lipoic acid, conjugated linoleic acid and quercetin (perinerv) in patients with carpal tunnel syndrome. International journal of immunopathology and pharmacology. 2015; (28): 256–262. https://doi.org/10.1177/0394632015584501
- Raissi G.R., Ghazaei F., Forogh B., et al. The effectiveness of radial extracorporeal shock waves for treatment of carpal tunnel syndrome: A randomized clinical trial. Ultrasound in medicine & biology. 2017; (43): 453–460. https://doi.org/10.1016/j.ultrasmedbio.2016.08.022
- Vahdatpour B., Kiyani A., Dehghan F. The Effectiveness of Radial Extracorporeal Shock Waves for Treatment of Carpal Tunnel Syndrome: A Randomized Clinical Trial. Advanced biomedical research. 2016; (5): 120. https://doi.org/10.4103/2277-9175.186983
- Atthakomol P., Manosroi W., Phanphaisarn A., et al. Comparison of single-dose radial extracorporeal shock wave and local corticosteroid injection for treatment of carpal tunnel syndrome including mid-term efficacy: a prospective randomized controlled trial. BMC musculoskeletal disorders. 2018; 19(1): 32. https://doi.org/10.1186/s12891-018-1948-3
- Gesslbauer C., Mickel M., Schuhfried O., et al. Effectiveness of focused extracorporeal shock wave therapy in the treatment of carpal tunnel syndrome: A randomized, placebo-controlled pilot study. Wiener klinische Wochenschrift. 2020; (133): 568–577. https://doi.org/10.1007/s00508-020-01785-9
- Karataş Ö., Çatal S., Gökmen E.A., Samanci N. Treatment of carpal tunnel syndrome with eswt: A sham controlled double blinded randomised study The Annals of Clinical and Analytical Medicine. 2020; (11): 166–170.
- Ulucaköy R.K., Yurdakul F.G., Bodur H. Extracorporeal shock wave therapy as a conservative treatment option for carpal tunnel syndrome: A double-blind, prospective, randomized, placebo-controlled study. Turkish journal of physical medicine and rehabilitation. 2020; (66): 388–397. https://doi.org/10.5606/tftrd.2020.3956
- Menekseoglu A.K., Korkmaz M.D., Segmen H. Clinical and electrophysiological efficacy of extracorporeal shock-wave therapy in carpal tunnel syndrome: a placebo-controlled, double-blind clinical trial. Revista da Associacao Medica Brasileira. 2023; 69(1): 124–130. https://doi.org/10.1590/1806-9282.20220943
- Xie Y., Zhang C., Liang B., et al. Effects of shock wave therapy in patients with carpal tunnel syndrome: a systematic review and meta-analysis. Disability and rehabilitation. 2022; 44(2): 177–188. https://doi.org/10.1080/09638288.2020.1762769
- Turgut M.C., Saglam G., Toy S. Efficacy of extracorporeal shock wave therapy for pillar pain after open carpal tunnel release: a double-blind, randomized, sham-controlled study. The Korean journal of pain. 2021; 34(3): 315–321. https://doi.org/10.3344/kjp.2021.34.3.315
- Romeo P., d’Agostino M.C., Lazzerini A., Sansone V.C. Extracorporeal shock wave therapy in pillar pain after carpal tunnel release: a preliminary study. Ultrasound in Medicine & Biology. 2011; (37): 1603–1608. https://doi.org/10.1016/j.ultrasmedbio.2011.07.002
- Haghighat S., Zarezadeh A., Khosrawi S., Oreizi A. Extracorporeal shockwave therapy in pillar pain after carpal tunnel release: a prospective randomized controlled trial. Advanced biomedical research. 2019; (8): 31. https://doi.org/10.4103/abr.abr_86_18
- Takahashi C.D., Der-Yeghiaian L., Le V., Motiwala R.R., Cramer S.C. Robot-Based Hand Motor Therapy after Stroke. Brain. 2008; (131): 425–437. https://doi.org/10.1093/brain/awm311
- Jamin P., Duret C., Hutin E., et al. Using Robot-Based Variables during Upper Limb Robot-Assisted Training in Subacute Stroke Patients to Quantify Treatment Dose. Sensors. 2022; (22): 2989. https://doi.org/10.3390/s22082989
- Falzarano V., Marini F., Morasso P., Zenzeri J. Devices and Protocols for Upper Limb Robot-Assisted Rehabilitation of Children with Neuromotor Disorders. Applied Sciences. 2019; (9): 2689. https://doi.org/10.3390/app9132a689
- Held J.P.O., Van Duinen J., Luft A.R., Veerbeek J.M. Eligibility screening for an early upper limb stroke rehabilitation study. Frontiers in neurology. 2019; (10): 683. https://doi.org/10.3389/fneur.2019.00683
- Aggogeri F., Mikolajczyk T., O’Kane J. Robotics for rehabilitation of hand movement in stroke survivors. Advances in Mechanical Engineering. 2019; 11(4). https://doi.org/10.1177/1687814019841921
- Mehrholz J., Pohl M., Platz T., et al. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database of Systematic Reviews. 2018; 9(9): CD006876. https://doi.org/10.1002/14651858.CD006876.pub5
- Zhang B., Kan L., Dong A., et al. The effects of action observation training on improving upper limb motor functions in people with stroke: A systematic review and meta-analysis. PLoS ONE. 2019; (14): e0221166. https://doi.org/10.1371/journal.pone.0221166
- Liu C., Lu J., Yang H., Guo K. Current State of Robotics in Hand Rehabilitation after Stroke: A Systematic Review. Applied Sciences. 2022; (12): 4540. https://doi.org/10.3390/app12094540
- Khalid S., Alnajjar F., Gochoo M., Shimoda S. Robotic assistive and rehabilitation devices leading to motor recovery in upper limb: a systematic review. Disability and rehabilitation. Assistive technology. 2023; 18(5): 658–672. https://doi.org/10.1080/17483107.2021.1906960
- Emerson J.R., Binks J.A., Scott M.W., et al. Combined action observation and motor imagery therapy: A novel method for post-stroke motor rehabilitation. AIMS neuroscience. 2018; (5): 236–252. https://doi.org/10.3934/Neuroscience.2018.4.236
- Errante A., Saviola D., Cantoni M., et al. Effectiveness of action observation therapy based on virtual reality technology in the motor rehabilitation of paretic stroke patients: A randomized clinical trial. BMC neurology. 2022; (22): 109. https://doi.org/10.1186/s12883-022-02640-2
- Jakob I., Kollreider A., Germanotta M., et al. Robotic and Sensor Technology for Upper Limb Rehabilitation. PM&R. 2018; (10): S189–S197. https://doi.org/10.1016/j.pmrj.2018.07.011
- Aprile I., Cruciani A., Germanotta M., et al. Upper limb robotics in rehabilitation: An approach to select the devices, based on rehabilitation aims, and their evaluation in a feasibility study. Applied Sciences. 2019; (9): 3920. https://doi.org/10.3390/app9183920
- Serrano-López Terradas P.A., Criado Ferrer T., Jakob I., Calvo-Arenillas J.I. Quo Vadis, Amadeo Hand Robot? A Randomized Study with a Hand Recovery Predictive Model in Subacute Stroke. International journal of environmental research and public health. 2023; 20(1): 690. https://doi.org/10.3390/ijerph20010690
- Skirven T.M., Osterman A.L., Fedorczyk J.P.T., Amadio P.C. Rehabilitation of the Hand and Upper Extremity, 2-volume set. 6th ed. Mosby. Expert Consult; 2011: 300–500, 450–500, 900–990, 1140–1205.
- Pomerance J., Fine I. Outcomes of carpal tunnel surgery with and without supervised postoperative therapy. Journal of Hand Surgery. American Volume. 2007; 32(8): 1159–1165. https://doi.org/10.1016/j.jhsa.2007.05.001

Контент доступен под лицензией Creative Commons Attribution 4.0 License.
©
Эта статья открытого доступа по лицензии CC BY 4.0. Издательство: ФГБУ «НМИЦ РК» Минздрава России.