Выпуск 23-5, 2024

Оригинальная статья

Влияние тренировок с ограничением кровотока на инсулинорезистентность мужчин с метаболическим синдромом: рандомизированное контролируемое исследование



1,* ORCIDСверчков В.В., 1 ORCIDБыков Е.В.

1ФГБОУ ВО «Уральский государственный университет физической культуры», Челябинск, Россия


РЕЗЮМЕ

ВВЕДЕНИЕ. Метаболический синдром определяется, как патологическое состояние, характеризующееся абдоминальным ожирением, гипертонией, дислипидемией, нарушением толерантности к глюкозе. Предположительно, резистентность к инсулину лежит в основе метаболического синдрома. Современные исследования, в том числе с Менделевской рандомизацией, продемонстрировали, что мышечная сила и мышечная масса могут играть важную роль в механизмах резистентности к инсулину.
ЦЕЛЬ. Установить связь между относительной мышечной силой верхних конечностей и  индексом триглицериды/глюкоза, а также оценить влияние различных режимов упражнений с отягощениями на альтернативные показатели инсулинорезистентности у мужчин с метаболическим синдромом.
МАТЕРИАЛЫ И МЕТОДЫ. На первом этапе исследования было обследовано 216 мужчин в возрасте от 25 до 50 лет. Были оценены относительная мышечная сила верхних конечностей в упражнении «Жим штанги лежа» и индекс триглицериды/глюкоза. На втором этапе было проведено рандомизированное контролируемое исследование, для которого было отобрано 60 мужчин, которые соответствовали критериям метаболического синдрома. Мужчины с метаболическим синдромом были разделены на три группы: низкоинтенсивная силовая тренировка с ограничением кровотока (n = 20), высокоинтенсивная силовая тренировка (n = 20), низкоинтенсивная силовая тренировка без ограничения кровотока (n = 20). Тренировки проводились 2 раза в неделю на протяжении 12 недель. До и после исследования оценивались индекс триглицериды/глюкоза, соотношение триглицеридов к липопротеинам высокой плотности, комбинация индекса триглицериды/глюкоза с индексом массы тела.
РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ. Было обнаружено, что относительная сила мышц верхних конечностей обратно пропорциональна индексу триглицериды/глюкоза (r = –0,52; р < 0,05) у обследованных мужчин. После 12 недель тренировок с отягощениями было обнаружено статистически значимое снижение индекса триглицериды/глюкоза, соотношения триглицеридов к липопротеинам высокой плотности и комбинации индекса триглицериды/глюкоза с индексом массы тела для групп низкоинтенсивной силовой тренировки с ограничением кровотока и высокоинтенсивной силовой тренировки (обе, p < 0,01). Изменение состава тела, увеличение доли мышечных волокон I и IIa и уменьшение доли мышечных волокон IIx, увеличение активности транспортировщиков глюкозы, снижение системного воспаления являются основными потенциальными механизмами положительного влияния тренировок с отягощениями, в том числе в сочетании с ограничением кровотока на резистентность к инсулину у мужчин с метаболическим синдромом.
ЗАКЛЮЧЕНИЕ. Существует обратно пропорциональная связь между мышечной силой и  индексом триглицериды/глюкоза; тренировки с отягощениями являются эффективным и безопасным инструментом для снижения альтернативных показателей инсулинорезистентности и могут быть включены в комплексные программы коррекции для мужчин с метаболическим синдромом.

КЛЮЧЕВЫЕ СЛОВА: резистентность к инсулину, метаболический синдром, силовые тренировки, силовые тренировки с ограничением кровотока, мышечная сила, упражнения с отягощениями

ИСТОЧНИК ФИНАНСИРОВАНИЯ: Данное исследование не было поддержано никакими внешними источниками финансирования.

КОНФЛИКТ ИНТЕРЕСОВ: Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

ДЛЯ ЦИТИРОВАНИЯ: Сверчков В.В.,Быков Е.В. Влияние тренировок с ограничением кровотока на инсулинорезистентность мужчин с метаболическим синдромом: рандомизированное контролируемое исследование. Вестник восстановительной медицины. 2024; 23(5):11-21. https://doi.org/10.38025/2078-1962-2023-23-5-11-21 [Sverchkov V.V., Bykov  E.V. Effect of Blood Flow Restriction Training on Insulin Resistance in Men with Metabolic Syndrome: a Randomized Controlled Trial. Bulletin of Rehabilitation Medicine. 2024; 23(5):11-21. https://doi.org/10.38025/2078-1962-2023-23-5-11-21 (In Russ.).]

ДЛЯ КОРРЕСПОНДЕНЦИИ:

Сверчков Вадим Владимирович, E-mail: vadim.sverchkov@yandex.ru, bykov@uralgufk.ru


Список литературы:

  1. Saklayen M.G. The Global Epidemic of the Metabolic Syndrome. Curr Hypertens Rep. 2018; 20(2): 12–26. https://doi.org/10.1007/s11906-018-0812-z
  2. Yaribeygi H., Farrokhi F., Butler A., et al. Insulin resistance: Review of the underlying molecular mechanisms. J Cell Physiol. 2019; 234(6): 8152–8161.https://doi.org/10.1002/jcp.27603
  3. Nevárez-Sida A., Guerrero-Romero F. The Triglycerides and Glucose Index: A Cost-Effectiveness Analysis Compared with the Homeostatic Model Assessment for Insulin Resistance. Value Health Reg Issues. 2023; 37: 49–52. https://doi.org/10.1016/j.vhri.2023.05.001
  4. Chamroonkiadtikun P., Ananchaisarp T., Wanichanon W. The triglyceride-glucose index, a predictor of type 2 diabetes development: A retrospective cohort study. Prim Care Diabetes. 2020; 14(2): 161–167. https://doi.org/10.1016/j.pcd.2019.08.004
  5. Ramdas Nayak V., Satheesh P., Shenoy M., et al. Triglyceride Glucose (TyG) Index: A surrogate biomarker of insulin resistance. J Pak Med Assoc. 2022; 72(5): 986–988. https://doi.org/10.47391/JPMA.22-63
  6. Li H., Miao X., Li Y. The Triglyceride Glucose (TyG) Index as a Sensible Marker for Identifying Insulin Resistance and Predicting Diabetic Kidney Disease. Med Sci Monit. 2023; 29: 36–49. https://doi.org/10.12659/MSM.939482
  7. Lim T., Lee H., Lee Y. Triglyceride to HDL-cholesterol ratio and the incidence risk of type 2 diabetes in community dwelling adults: A longitudinal 12-year analysis of the Korean Genome and Epidemiology Study. Diabetes Res Clin Pract. 2020; 163: 108–124. https://doi.org/10.1016/j.diabres.2020.108150
  8. Song B., Zhao X., Yao T., et al. Triglyceride Glucose-Body Mass Index and Risk of Incident Type 2 Diabetes Mellitus in Japanese People with Normal Glycemic Level: A Population-Based Longitudinal Cohort Study. Front Endocrinol (Lausanne). 2022; 13: 907–927. https://doi.org/10.3389/fendo.2022.907973
  9. Liu X., Tan Z., Huang Y., et al. Relationship between the triglyceride-glucose index and risk of cardiovascular diseases and mortality in the general population: a systematic review and meta-analysis. Cardiovasc Diabetol. 2022; 21(1): 124–143. https://doi.org/10.1186/s12933-022-01546-0
  10. Liao C., Xu H., Jin T., et al. Triglyceride-glucose index and the incidence of stroke: A meta-analysis of cohort studies. Front Neurol. 2023; 13: 103–123.https://doi.org/10.3389/fneur.2022.1033385
  11. Yi Q., Hu H., Zeng Q. Association of triglycerides to high density lipoprotein cholesterol ratio with hypertension in Chinese adults: a cross-sectional study. Clin Exp Hypertens. 2023; 45(1): 219–237. https://doi.org/10.1080/10641963.2023.2195996
  12. Nikbakht H., Najafi F., Shakiba E., et al. Triglyceride glucose-body mass index and hypertension risk in iranian adults: a population-based study. BMC Endocr Disord. 2023; 23(1): 156–172. https://doi.org/10.1186/s12902-023-01411-5
  13. Colberg S., Sigal R., Yardley J., et al. Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care. 2016; 39(11): 2065–2079. https://doi.org/10.2337/dc16-1728
  14. Slentz C., Bateman L., Willis L., et al. Effects of aerobic vs. resistance training on visceral and liver fat stores, liver enzymes, and insulin resistance by HOMA in overweight adults from STRRIDE AT/RT. Am J Physiol Endocrinol Metab. 2011; 301(5): 1033–1039. https://doi.org/10.1152/ajpendo.00291.2011
  15. Kobayashi Y., Long J., Dan S., et al. Strength training is more effective than aerobic exercise for improving glycaemic control and body composition in people with normal-weight type 2 diabetes: a randomised controlled trial. Diabetologia. 2023; 66(10): 1897–1907. https://doi.org/10.1007/s00125-023-05958-9
  16. Wewege M., Desai I., Honey C., et al. The Effect of Resistance Training in Healthy Adults on Body Fat Percentage, Fat Mass and Visceral Fat: A Systematic Review and Meta-Analysis. Sports Med. 2022; 52(2): 287–300. https://doi.org/10.1007/s40279-021-01562-2
  17. Сверчков В.В., Быков Е.В. Влияние силовых тренировок с ограничением кровотока на состав тела у лиц с метаболическим синдромом: рандомизированное контролируемое исследование. Вестник восстановительной медицины. 2023; 22(3): 59–65. https://doi.org/10.38025/2078-1962-2023-22-3-59-65 [Sverchkov V.V., Bykov E.V. Effect of Blood Flow-Restricted Strength Training on Body Composition: a Randomized Controlled Study of Patients with Metabolic Syndrome. Bulletin of Rehabilitation Medicine. 2023; 22(3): 59–65. https://doi.org/10.38025/2078-1962-2023-22-3-59-65 (In Russ.).]
  18. Ihalainen J.K., Inglis A., Mäkinen T., et al. Strength Training Improves Metabolic Health Markers in Older Individual Regardless of Training Frequency. Front Physiol. 2019; 10: 32–49. https://doi.org/10.3389/fphys.2019.00032
  19. Lee J. Associations of Relative Handgrip Strength and Aerobic and Strength Exercises with Metabolic Syndrome Prevalence. Int J Environ Res Public Health. 2022; 19(22): 146–159. https://doi.org/10.3390/ijerph192214646
  20. Moon H., Lee T., Chung T. Association between Lower-to-Upper Ratio of Appendicular Skeletal Muscle and Metabolic Syndrome. J Clin Med. 2022; 11(21): 6309–6321. https://doi.org/10.3390/jcm11216309
  21. Сверчков В.В., Быков Е.В. Позитивное влияние низкоинтенсивных силовых тренировок с ограничением кровотока на показатели обмена веществ у мужчин с метаболическим синдромом. Журнал медико-биологических исследований. 2023; 11(3): 310–320. https://doi.org/10.37482/2687-1491-Z149 [Sverchkov V.V., Bykov E.V. Low-Intensity Resistance Training with Blood Flow Restriction Improves Metabolic Parameters in Men with Metabolic Syndrome. Journal of Medical and Biological Research. 2023; 11(3): 310–320. https://doi.org/10.37482/2687-1491-Z149 (In Russ.).]
  22. Ye C., Kong L., Wang Y. et al. Causal associations of sarcopenia-related traits with cardiometabolic disease and Alzheimer’s disease and the mediating role of insulin resistance: A Mendelian randomization study. Aging Cell. 2023; 22(9): 139–152. https://doi.org/10.1111/acel.13923 
  23. Farmer R., Mathur R., Schmidt A., et al. Associations Between Measures of Sarcopenic Obesity and Risk of Cardiovascular Disease and Mortality: A Cohort Study and Mendelian Randomization Analysis Using the UK Biobank. J Am Heart Assoc. 2019; 8(13): 011638.https://doi.org/10.1161/JAHA.118.011638
  24. Alberti K., Eckel R., Grundy S., et al. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009; 120(16): 1640–1645. https://doi.org/10.1161/CIRCULATIONAHA.109.192644
  25. DeBoer M., Gurka M. Clinical utility of metabolic syndrome severity scores: considerations for practitioners. Diabetes Metab Syndr Obes. 2017; 10: 65–72. https://doi.org/10.2147/DMSO.S101624
  26. Bastos V., Machado S., Teixeira D. Feasibility and Usefulness of Repetitions-In-Reserve Scales for Selecting Exercise Intensity: A Scoping Review. Percept Mot Skills. 2024 Jun; 131(3): 940–970. https://doi.org/10.1177/00315125241241785
  27. LeSuer D.A., McCormick J.H., Mayhew J., et al. The Accuracy of Prediction Equations for Estimating 1-RM Performance in the Bench Press, Squat, and Deadlift. Journal of Strength and Conditioning Research. 1997; 11(4): 211–213. https://doi.org/10.1519/00124278-199711000-00001
  28. Сверчков В.В., Быков Е.В. Влияние низкоинтенсивных силовых тренировок с ограничением кровотока на динамику силовых способностей у лиц с метаболическим синдромом. Проблемы подготовки научных и научно-педагогических кадров: опыт и перспективы: сборник научных трудов молодых ученых, посвященный 50-летию УралГУФК. 2022: 177–184. [Sverchkov V.V., Bykov E.V. The influence of low-intensity strength training with blood flow restriction on the dynamics of strength abilities in persons with metabolic syndrome. Problems of training scientific and scientific-pedagogical personnel: experience and prospects: a collection of scientific works of young scientists dedicated to the 50th anniversary of UralGUFK. 2022; 177–184 (In Russ.).]
  29. Aniceto R.R., da Silva Leandro L. Practical Blood Flow Restriction Training: New Methodological Directions for Practice and Research. Sports Med Open. 2022; 8(1): 87. https://doi.org/10.1186/s40798-022-00475-2
  30. Freitas E., Miller R., Heishman A., et al. Acute Physiological Responses to Resistance Exercise with Continuous Versus Intermittent Blood Flow Restriction: A Randomized Controlled Trial. Front Physiol. 2020; 11: 132–144. https://doi.org/10.3389/fphys.2020.00132
  31. Couto A., Pohl H., Bauer M., et al. Accuracy of the triglyceride-glucose index as a surrogate marker for identifying metabolic syndrome in non-diabetic individuals. Nutrition. 2023; 109: 111–128. https://doi.org/10.1016/j.nut.2023.111978
  32. Сверчков В.В. Быков Е.В. Мышечная сила и тяжесть метаболического синдрома. Олимпийский спорт и спорт для всех: Материалы XXVI Международного научного Конгресса, Казань, 08–11 сентября 2021 года. Под общей редакцией Р.Т. Бурганова. Казань: Поволжская государственная академия физической культуры, спорта и туризма. 2021: 409–411. [Sverchkov V.V., Bykov E.V. Muscle strength and severity of metabolic syndrome. Olympic sport and sport for all: Proceedings of the XXVI International Scientific Congress, Kazan, September 08–11, 2021. Under the general editorship of R.T. Burganova. Kazan: Volga Region State Academy of Physical Culture, Sports and Tourism. 2021; 409–411 (In Russ.).]
  33. Al Saedi A., Debruin D., Hayes A., et al. Lipid metabolism in sarcopenia. Bone. 2022; 164: 116–129. https://doi.org/10.1016/j.bone.2022.116539
  34. Li H., Meng Y., He S., et al. Macrophages, Chronic Inflammation, and Insulin Resistance. Cells. 2022; 11(19): 300–318. https://doi.org/10.3390/cells11193001
  35. Mikó A., Pótó L., Mátrai P., et al. Gender difference in the effects of interleukin-6 on grip strength — a systematic review and meta-analysis. BMC Geriatr. 2018; 18(1): 107–124. https://doi.org/10.1186/s12877-018-0798-z
  36. Liang M., Pan Y., Zhong T., et al. Effects of aerobic, resistance, and combined exercise on metabolic syndrome parameters and cardiovascular risk factors: a systematic review and network meta-analysis. Rev Cardiovasc Med. 2021; 22(4): 1523–1533. https://doi.org/10.31083/j.rcm2204156
  37. Sun Y., Lu B., Su W., et al. Comprehensive assessment of the effects of concurrent strength and endurance training on lipid profile, glycemic control, and insulin resistance in type 2 diabetes: A meta-analysis. Medicine (Baltimore). 2024; 103(12): 37494. https://doi.org/10.1097/MD.0000000000037494
  38. Jiahao L., Jiajin L., Yifan L. Effects of resistance training on insulin sensitivity in the elderly: A meta-analysis of randomized controlled trials. J Exerc Sci Fit. 2021 Oct; 19(4): 241–251. https://doi.org/10.1016/j.jesf.2021.08.002
  39. Boyer W., Toth L., Brenton M., et al. The role of resistance training in influencing insulin resistance among adults living with obesity/overweight without diabetes: A systematic review and meta-analysis. Obes Res Clin Pract. 2023; 17(4): 279–287. https://doi.org/10.1016/j.orcp.2023.06.002
  40. Huang L., Fang Y., Tang L. Comparisons of different exercise interventions on glycemic control and insulin resistance in prediabetes: a network meta-analysis. BMC Endocr Disord. 2021; 21(1): 181. https://doi.org/10.1186/s12902-021-00846-y
  41. Bennasar-Veny M., Malih N., Galmes-Panades A., et al. Effect of physical activity and different exercise modalities on glycemic control in people with prediabetes: a systematic review and meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne). 2023; 14: 1233312. https://doi.org/10.3389/fendo.2023.1233312
  42. Lee M., Kim E., Bae S., et al. Protective role of skeletal muscle mass against progression from metabolically healthy to unhealthy phenotype. Clin Endocrinol (Oxf ). 2019; 90(1):102–113. https://doi.org/10.1111/cen.13874
  43. Lopez P., Taaffe D., Galvão D., et al. Resistance training effectiveness on body composition and body weight outcomes in individuals with overweight and obesity across the lifespan: A systematic review and meta-analysis. Obes Rev. 2022; 23(5): 134–149. https://doi.org/10.1111/obr.13428
  44. Brooks N., Layne J., Gordon P., et al. Strength training improves muscle quality and insulin sensitivity in Hispanic older adults with type 2 diabetes. Int J Med Sci. 2006; 4(1): 19–27. https://doi.org/10.7150/ijms.4.19
  45. Fisher G., Windham S., Griffin P., et al. Associations of human skeletal muscle fiber type and insulin sensitivity, blood lipids, and vascular hemodynamics in a cohort of premenopausal women. Eur J Appl Physiol. 2017; 117(7): 1413–1422. https://doi.org/10.1007/s00421-017-3634-9
  46. Schoenfeld B., Ogborn D., Piñero A., et al. Fiber-Type-Specific Hypertrophy with the Use of Low-Load Blood Flow Restriction Resistance Training: A Systematic Review. J Funct Morphol Kinesiol. 2023; 8(2): 51–67. https://doi.org/10.3390/jfmk8020051
  47. Zhao Y., Wu Y. Resistance Training Improves Hypertrophic and Mitochondrial Adaptation in Skeletal Muscle. Int J Sports Med. 2023; 44(9): 625–633. https://doi.org/10.1055/a-2059-9175
  48. De Queiros V., Dantas M., Neto G., et al. Application and side effects of blood flow restriction technique: A cross-sectional questionnaire survey of professionals. Medicine (Baltimore). 2021; 100(18): 25794. https://doi.org/10.1097/MD.0000000000025794
  49. Ogawa H., Nakajima T., Shibasaki I., et al. Low-Intensity Resistance Training with Moderate Blood Flow Restriction Appears Safe and Increases Skeletal Muscle Strength and Size in Cardiovascular Surgery Patients: A Pilot Study. J Clin Med. 2021; 10(3): 547. https://doi.org/10.3390/jcm10030547
  50. Paluch A., Boyer W., Franklin B., et al. On behalf the American Heart Association Council on Lifestyle and Cardiometabolic Health; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Clinical Cardiology; Council on Cardiovascular and Stroke Nursing; Council on Epidemiology and Prevention; and Council on Peripheral Vascular Disease. Resistance Exercise Training in Individuals with and Without Cardiovascular Disease: 2023 Update: A Scientific Statement from the American Heart Association. Circulation. 2024; 149(3): 217–231. https://doi.org/10.1161/CIR.0000000000001189
  51. Hollings M., Mavros Y., Freeston J., et al. The effect of progressive resistance training on aerobic fitness and strength in adults with coronary heart disease: A systematic review and meta-analysis of randomised controlled trials. Eur J Prev Cardiol. 2017; 24(12): 1242–1259. https://doi.org/10.1177/2047487317713329




Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.

©
Эта статья открытого доступа по лицензии CC BY 4.0. Издательство: ФГБУ «НМИЦ РК» Минздрава России.