Issue №3-20, 2020

Role of clonal gemopoeisis in development of individual approaches for early diagnostics, treatment and rehabilitation of patients with cardio-vascular diseases



1,2 Demidov O.N., 3,4 Shakula A.V., 4 Gulevatiy G.V., 4 Sobolev A.V.

1 Institute of Cytology of the Russian Academy of Sciences, Saint-Petersburg, Russian Federation
2 National medical research center oncology. N.N. Petrov, Saint-Petersburg, Russian Federation
3 National Medical Research Center of Rehabilitation and Balneology, Moscow, Russian Federation
4 The Moscow City Resort Complex, Moscow, Russian Federation


ABSTRACT

Recently, due to significant improvement and cheapening of the new generation of full genome sequencing technology,it has become possible to identify acquired mutations in individual cells of the hematopoietic system. This has led to thedetection of clones of hematopoietic cells with acquired mutations in certain genes in middle-aged and elderly peopleand made it possible to characterize a new prepathological state – clonal hemopoiesis. Clonal hemopoiesis is definedas the appearance and clonal expansion of cells of the hemopoietic system with genetic changes that give these cellscertain advantages in proliferation and/or resistance to adverse factors in comparison with other hemopoietic cells. Thisphenomenon is found mainly in individuals after 55 years of age and is practically not found in individuals of young age. Atthis age, most individuals show signs of cardiovascular pathology of some degree of severity. This review discusses someaspects of the possible impact of clonal hemopoiesis on cardiovascular diseases.


KEYWORDS: hemopoietic system, clonal hemopoiesis, cardiovascular pathology, diagnosis, treatment and rehabilitation.

For citation: Demidov O.N., Shakula A.V., Gulevatiy G.V., Sobolev A.V. Role of clonal gemopoeisis in development of individual approaches for early diagnostics, treatment and rehabilitation of patients with cardio-vascular diseases. Bulletin of rehabilitation medicine. 2020; 97 (3): 45-49. https://doi.org/10.38025/2078-1962-2020-97-3-45-49



References:

1. Bubnova M.G., Aronov D.M., Ivanova G.E. Pilotnyj proekt «Razvitie sistemy reabilitacii bol'nyh serdechno-sosudistymi zabolevaniyami v lechebnyh uchrezhdeniyah Rossijskoj Federacii». Rezul'taty trekhletnego nablyudeniya [Pilot project «Development of the system of rehabilitation of patients with cardiovascular diseases in medical institutions of the Russian Federation» The results of a three-year observation]. Vestnik vosstanovitel’noj mediciny. 2016; 4: 2-11 (In Russ.).
2. Shchegolkov A.M., Ovchinnikov Y.V., Anuchkin A.A. Medicinskaya reabilitaciya bol'nyh ishemicheskoj bolezn'yu serdca posle koronarnogo shunt-irovaniya s uchetom ih adaptacionnogo potenciala [Medical rehabilitation of patients with coronary heart disease after coronary bypass surgery, taking into account their adaptive potential]. Vestnik vosstanovitel’noj mediciny. 2018; 5: 8-15 (In Russ.).
3. Knyazeva T.A., Nikiforova T.I., Eremushkin M.A. Medicinskaya reabilitaciya bol'nyh ishemicheskoj bolezn'yu serdca posle koronarnogo shuntirovaniya s uchetom ih adaptacionnogo potenciala [Improving the effectiveness of cardiorehabilitation by incorporating metabolic adaptation techniques to myocardial use]. Vestnik vosstanovitel’noj mediciny. 2019; 3: 34-39 (In Russ.).
4. Arsenic R, Treue D, Lehmann A, Hummel M, Dietel M, Denkert C, Budczies J. Comparison of targeted next-generation sequencing and Sanger sequencing for the detection of PIK3CA mutations in breast cancer. BMC Clinical Pathology. 2015; 15: 20-28. DOI:10.1186/s12907-015-0020-6.
5. Barkhatov I.M., Predeus A.V., Chukhlovin A.B. Sekvenirovanie novogo pokoleniya i oblasti ego primeneniya v onkogematologii [Next-generation gene sequencing and its applications in oncohematology]. Onkogematologiya. 2016; 11(4): 56-63. (In Russ.) DOI:10.17650/1818-8346-2016-11-4-22-32
6. Choi S, Chu J, Kim B, Ha SY, Kim ST, Lee J, Kang WK, Han H, Sohn I, Kim KM. Tumor Heterogeneity Index to Detect Human Epidermal Growth Factor Receptor 2 Amplification by Next-Generation Sequencing: A Direct Comparison Study with Immunohistochemistry. The Journal of Molecular Diagnostics. 2019; 21(4): 612-622. DOI:10.1016/j.jmoldx.2019.02.007.
7. Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. The New England Journal of Medicine. 2014; 371(26): 2477-2487. DOI:10.1056/NEJMoa1409405.
8. Coombs CC, Zehir A, Devlin SM, Kishtagari A, Syed A, et al. Therapy-Related Clonal Hematopoiesis in Patients with Non-hematologic Cancers Is Common and Associated with Adverse Clinical Outcomes. Cell Stem Cell. 2017; 21(3): 374-382. DOI:10.1016/j.stem.2017.07.010.
9. Jan M, Ebert B, Jaiswal S. Clonal hematopoiesis. Seminars in Hematology. 2017; 54(1): 43-50. DOI:10.1053/j.seminhematol.2016.10.002.
10. Shlush LI. Age-related clonal hematopoiesis. Blood. 2018; 131(5): 496-504. DOI: 0.1182/blood-2017-07-746453.
11. Zink F, Stacey SN, Norddahl GL, Frigge ML, Magnusson OT, et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood. 2017; 130(6): 742-752. DOI:10.1182/blood-2017-02-769869.
12. Verovskaya E, Broekhuis MJ, Zwart E, Ritsema M, van Os R, de Haan G, Bystrykh LV. Heterogeneity of young and aged murine hematopoietic stem cells revealed by quantitative clonal analysis using cellular barcoding. Blood. 2013; 122(4): 523-532. DOI:10.1182/blood-2013-01-481135
13. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, et al. Age-related clonal hematopoiesis associated with adverse outcomes. The New England Journal of Medicine. 2014; 371(26): 2488-2498. DOI:10.1056/NEJMoa1408617.
14. Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG, et al. Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease. The New England Journal of Medicine. 2017; 377(2): 111-121. DOI:10.1056/NEJMoa1701719.
15. Fuster JJ, MacLauchlan S, Zuriaga MA, Polackal MN, Ostriker AC, et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science. 2017; 355(6327): 842-847. DOI:10.1126/science.aag1381.
16. Grigorash BB, Uyanik B, Kochetkova EY, Goloudina AR, Demidov ON. Wip1 inhibition leads to severe pro-inflammatory phenotype in skin in response to chemical irritation. Journal of Dermatological Science. 2017; 87(1): 85-88. DOI:10.1016/j.jdermsci.2017.03.021.
17. Goloudina AR, Kochetkova EY, Pospelova TV, Demidov ON. Wip1 phosphatase: between p53 and MAPK kinases pathways. Oncotarget. 2016; 7(21): 31563-31571. DOI:10.18632/oncotarget.7325.
18. Demidov ON, Kek C, Shreeram S, Timofeev O, Fornace AJ, et al. The role of the MKK6/p38 MAPK pathway in Wip1-dependent regulation of ErbB2-driven mammary gland tumorigenesis. Oncogene. 2007; 26(17): 2502-2506. DOI:10.1038/sj.onc.1210032.
19. Demidov ON, Timofeev O, Lwin HN, Kek C, Appella E, et al. Wip1 phosphatase regulates p53-dependent apoptosis of stem cells and tumorigenesis in the mouse intestine. Cell Stem Cell. 2007; 1(2): 180-190. DOI:10.1016/j.stem.2007.05.020.
20. Le Guezennec X, Brichkina A, Huang YF, Kostromina E, Han W, Bulavin DV. Wip1-dependent regulation of autophagy, obesity, and atherosclerosis. Cell Metabolism. 2012; 16(1): 68-80. DOI:10.1016/j.cmet.2012.06.003.
21. Ruark E, Snape K, Humburg P, Loveday C, Bajrami I, et al. Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer. Nature. 2013; 493(7432): 406-410. DOI:10.1038/nature11725.
22. Hsu JI, Dayaram T, Tovy A, De Braekeleer E, Jeong M, et al. PPM1D Mutations Drive Clonal Hematopoiesis in Response to Cytotoxic Chemotherapy. Cell Stem Cell. 2018; 23(5): 700-713. DOI:10.1016/j.stem.2018.10.004.
23. Uyanik B, Grigorash BB, Goloudina AR, Demidov ON. DNA damage-induced phosphatase Wip1 in regulation of hematopoiesis, immune system and inflammation. Cell Death Discovery. 2017; 3: 17018-17022. DOI:10.1038/cddiscovery.2017.18.
24. Zhuchenko N.A., Titel' Ju.B., Jakob O.V., Hammad E.V., Asanov A.Ju. Geneticheskoe testirovanie - osnova prediktivno-personalizirovannoj mediciny [Genetic testing - the basis of the predictive personalized medicine]. Vestnik vosstanovitel’noj mediciny. 2013; 5(57): 57-56 (In Russ.).
25. Trukhanov A.I., Skakun S.G., Grechko A.V. Sovremennaya rol' personificirovannoj cifrovoj mediciny v razvitii medicinskoj reabilitacii [The role of digital medicine in the development of personalized preventive rehabilitation]. Vestnik vosstanovitel’noj mediciny. 2018; 1(83): 2-13 (In Russ.).




Creative Commons License
The content is available under the Creative Commons Attribution 4.0 License.

©

Эта статья открытого доступа по лицензии CC BY 4.0. Издательство: ФГБУ «НМИЦ РК» Минздрава России.
This is an open article under the CC BY 4.0 license. Published by the National Medical Research Center for Rehabilitation and Balneology.