Issue 24-4, 2025
Original article
Use of Magnetic Nanoparticles for Biofunctionalization of Alginate Hydrogel: Experimental Study Findings
Pavel A. Markov1,*,
Petr S. Eremin2,
Mikhail A. Torlopov2,
Ilia S. Martakov2,
Vasily I. Mikhaylov2
1 National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
2 Institute of Chemistry, Federal Research Centre "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", Syktyvkar, Russia
ABSTRACT
INTRODUCTION. The use of naturally occurring hydrocolloids and hydrogels as components of biomimetic materials has a significant advantage because such biopolymers are highly biocompatible. At the same time, the large-scale introduction of natural hydrogels in tissue engineering and practical medicine is hampered by the complexity of the structure standardization and chemical composition of this class of biopolymers, and, consequently, difficulties in predicting the cellular response to hydrogel biomaterials. One way to solve this problem may be the integration of magnetic nanoparticles into the structure of hydrogel biomaterials.
AIM. To evaluate the effect of magnetite nanoparticles on the biocompatibility and adhesion of fibroblasts to the surface of alginate hydrogel.
MATERIALS AND METHODS. A 2 % aqueous solution of sodium alginate was used to prepare the alginate hydrogel film. Magnetite nanoparticles treated with citric acid were used to modify the biofunctional properties of alginate hydrogel. Biocompatibility of materials was evaluated by light and luminescence microscopy using fluorescent dyes (DAPI, Rhodamine) and a kit for assessing metabolic activity of cell using a tetrazolium dye (MTT assay).
RESULTS AND DISCUSSION. It was found that the introduction of magnetite nanoparticles into the alginate film increases the biocompatibility of the hydrogel material. After 48 hours of incubation, the number of cells increases from 30 ± 5 to 60 ± 7 pcs/200 μm2, and the metabolic activity of fibroblasts is 93 % of the control values. The surface of the hybrid film acquires the ability to maintain the adhesion and viability of fibroblasts, the number of cells on the surface of the hybrid film is more than 10 times greater than the number of cells adhered to the alginate film. Thus, magnetite nanoparticles modified with citric acid can be used to regulate functional cellular responses to plant-derived hydrogel biomaterials.
CONCLUSION. A new method for the biofunctionalization of alginate hydrogel by including magnetite nanoparticles in its composition is proposed. The integration of magnetite nanoparticles with natural hydrogels and the creation of biomaterials with controlled structural and mechanical properties can be a solution to the problem of predictable cellular response to biopolymers heterogeneous in composition and structure.
KEYWORDS: magnetite nanoparticles, alginate, biomimetic materials, fibroblasts, tissue engineering, regenerative medicine, non-drug wound treatment
FOR CITATION:
Markov P.A., Eremin P.S., Torlopov M.A., Martakov I.S., Mikhailov V.I. Use of Magnetic Nanoparticles for Biofunctionalization of Alginate Hydrogel: Experimental Study Findings. Bulletin of Rehabilitation Medicine. 2025; 24(4):121–129. https://doi.org/10.38025/2078-1962-2025-24-4-121-129 (In Russ.).
FOR CORRESPONDENCE:
Pavel A. Markov, Е-mail: markovpa@nmicrk.ru, p.a.markov@mail.ru
References:
- Васильева В.А., Марченкова Л.А., Ответчикова Д.И. и др. Медицинская реабилитация после травм нижних конечностей у пациентов с сахарным диабетом: обзор литературы. Вестник восстановительной медицины. 2024; 22(3): 61–68. https://doi.org/10.38025/2078-1962-2024-23-3-61-68 [Vasileva V.A., Marchenkova L.A., Otvetchikova D.I., et al. Medical Rehabilitation after Lower Limb Injuries in Patients with Diabetes Mellitus: a Review. Bulletin of Rehabilitation Medicine. 2024; 22(3): 61–68. https://doi.org/10.38025/2078-1962-2024-23-3-61-68 (In Russ.).]
- Carton F., Rizzi M., Canciani E. et al. Use of Hydrogels in Regenerative Medicine: Focus on Mechanical Properties. Int J Mol Sci. 2024; 25(21): 11426. https://doi.org/10.3390/ijms252111426
- Amadeh A., Mohebbi N., Amadeh Z., Jamshidbeigi A. Comparative Efficacy of Autolytic and Collagenase-Based Enzymatic Debridement in Chronic Wound Healing: A Comprehensive Systematic Review. Int Wound J. 2025; 22(4): e70177. https://doi.org/10.1111/iwj.70177
- Ahmad Z., Salman S., Khan S.A, et al. Versatility of Hydrogels: From Synthetic Strategies, Classification, and Properties to Biomedical Applications. Gels. 2022; 8(3): 167. https://doi.org/10.3390/gels8030167
- Tran T., Hamid Z., Cheong K. A Review of Mechanical Properties of Scaffold in Tissue Engineering: Aloe Vera Composites. J. Phys. Conf. Ser. 2018; 1082: 012080. https://doi.org/10.1088/1742–6596/1082/1/012080
- Lu P., Ruan D., Huang M., et al. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther. 2024; 9(1): 166. https://doi.org/10.1088/1742–6596/1082/1/012080
- Марков П.А., Ерёмин П.С., Падерин Н.М. и др. Влияние биопластического материала на адгезию, рост и пролиферативную активность фибробластов человека в средах, имитирующих кислотность раневого ложа при остром и хроническом воспалении. Вестник восстановительной медицины. 2023; 22(2): 42–51. https://doi.org/10.38025/2078-1962-2023-22–2-42-51 [Markov P.A., Eremin P.S., Paderin N.M., et al. Effect of Bioplastic Material on Adhesion, Growth and Proliferative Activity of Human Fibroblasts when Incubated in Solutions Mimic the Acidity of Wound an Acute and Chronic Inflammation. Bulletin of Rehabilitation Medicine. 2023; 22(2): 42–51. https://doi.org/10.38025/2078-1962-2023-22-2-42-51 (In Russ.).]
- Cambria E., Brunner S., Heusser S. et al. Cell-Laden Agarose-Collagen Composite Hydrogels for Mechanotransduction Studies. Frontiers in bioengineering and biotechnology. 2020; 8:346. https://doi.org/10.3389/fbioe.2020.00346
- Zhang M., Sun Q., Liu Y., et al. Controllable ligand spacing stimulates cellular mechanotransduction and promotes stem cell osteogenic differentiation on soft hydrogels. Biomaterials. 2021; 268: 120543. https://doi.org/10.1016/j.biomaterials.2020.120543
- Meli V.S., Atcha H., Veerasubramanian P.K., et al. YAP-mediated mechanotransduction tunes the macrophage inflammatory response. Science advances. 2020; 6(49): eabb8471. https://doi.org/10.1126/sciadv.abb8471
- Chaudhuri O., Cooper-White J., Janmey P.A., et al. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature. 2020; 584(7822): 535–546. https://doi.org/10.1038/s41586–020–2612–2
- Liu J., Zheng H., Poh P.S., et al. Hydrogels for Engineering of Perfusable Vascular Networks. Int J Mol Sci. 2015; 16(7): 15997–6016. https://doi.org/10.3390/ijms160715997
- Zhang M., Sun Q., Liu Y., et al. Controllable ligand spacing stimulates cellular mechanotransduction and promotes stem cell osteogenic differentiation on soft hydrogels. Biomaterials. 2021: 268: 120543. https://doi.org/10.1016/j.biomaterials.2020.120543
- Raja I.S., Fathima N.N. Gelatin-Cerium Oxide Nanocomposite for Enhanced Excisional Wound Healing. ACS applied bio materials, 2018; 1(2): 487–495. https://doi.org/10.1021/acsabm.8b00208
- Wu P., Shen L., Liu H., et al. The marriage of immunomodulatory, angiogenic, and osteogenic capabilities in a piezoelectric hydrogel tissue engineering scaffold for military medicine. Military Medical Research. 2023; 10(1): 35. https://doi.org/10.1186/s40779-023-00469-5
- Chen L., Zhou X., He C. Mesoporous silica nanoparticles for tissue-engineering applications. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology. 2019; 11(6): e1573. https://doi.org/10.1002/wnan.1573
- Stiufiuc G.F., Stiufiuc R.I. Magnetic Nanoparticles: Synthesis, Characterization, and Their Use in Biomedical Field. Applied Sciences. 2024; 14(4): 1623. https://doi.org/10.3390/app14041623
- Mikhaylov V.I., Kryuchkova A.V., Sitnikov P.A., et al. Magnetite Hydrosols with Positive and Negative Surface Charge of Nanoparticles: Stability and Effect on the Lifespan of Drosophila melanogaster. Langmuir. 2020; 36: 4405–4415. https://doi.org/10.1021/acs.langmuir.0c00605
- Arami H., Teeman E., Troksa A., et al. Tomographic magnetic particle imaging of cancer targeted nanoparticles. Nanoscale. 2017; 9(47): 18723–18730. https://doi.org/10.1039/c7nr05502a
- Estelrich J., Sánchez-Martín M.J., Busquets M.A. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. International Journal of Nanomedicine. 2015; 10: 1727–1741. https://doi.org/10.2147/IJN.S76501
- Rarokar N., Yadav S., Saoji S., et al. Magnetic nanosystem a tool for targeted delivery and diagnostic application: Current challenges and recent advancement. International Journal of Pharmaceutics. 2024; 7: 100231. https://doi.org/10.1016/j.ijpx.2024.100231
- Lu Y., Wang X., Jia Y., et al. PAD4 Inhibitor-Loaded Magnetic Fe3O4 Nanoparticles for Magnetic Targeted Chemotherapy and Magnetic Resonance Imaging of Lung Cancer. International journal of nanomedicine. 2025; 20: 3031–3044. https://doi.org/10.2147/IJN.S502814
- Chircov C., Bejenaru I.T., Nicoară A.I., et al. Chitosan-Dextran-Glycerol Hydrogels Loaded with Iron Oxide Nanoparticles for Wound Dressing Applications. Pharmaceutics. 2022, 14(12): 2620. https://doi.org/10.3390/pharmaceutics14122620
- Hong J., Wu D., Wang H., et al. Magnetic fibrin nanofiber hydrogel delivering iron oxide magnetic nanoparticles promotes peripheral nerve regeneration. Regenerative biomaterials. 2024; 11: rbae075. https://doi.org/10.1093/rb/rbae075
- Najafi P., Tamjid E., Abdolmaleki P., Behmanesh M. Thermomagneto-responsive injectable hydrogel for chondrogenic differentiation of mesenchymal stem cells. Biomaterials advances. 2025; 168: 214115. https://doi.org/10.1016/j.bioadv.2024.214115
- Terkawi M.A., Matsumae G., Shimizu T., et al. Interplay between Inflammation and Pathological Bone Resorption: Insights into Recent Mechanisms and Pathways in Related Diseases for Future Perspectives. Int J Mol Sci. 2022; 23(3): 1786. https://doi.org/10.3390/ijms23031786
- Ponzetti M., Rucci N. Updates on Osteoimmunology: What’s New on the Cross-Talk Between Bone and Immune System. Front Endocrinol (Lausanne). 2019; 10: 236. https://doi.org/10.3389/fendo.2019.00236
- Xu G.R., Zhang C., Yang H.X., et al. Modified citrus pectin ameliorates myocardial fibrosis and inflammation via suppressing galectin-3 and TLR4/MyD88/NF-κB signaling pathway. Biomed Pharmacother. 2020; 126: 110071. https://doi.org/10.1016/j.biopha.2020.110071
- Cao J., Yang J., Wang Z., Lu M., Yue K. Modified citrus pectins by UV/H2O2 oxidation at acidic and basic conditions: Structures and in vitro anti-inflammatory, anti-proliferative activities. Carbohydr Polym. 2020; 247: 116742. https://doi.org/10.1016/j.carbpol.2020.116742
- Hurtado A., Cano-Vicent A., Tuñón-Molina A., et al. Engineering alginate hydrogel films with poly(3-hydroxybutyrate-co-3-valerate) and graphene nanoplatelets: Enhancement of antiviral activity, cell adhesion and electroactive properties. International journal of biological macromolecules. 2022; 219: 694–708. https://doi.org/10.1016/j.ijbiomac.2022.08.039
- Chen X., Liu J., Bu Y., et al. Dodecyl glycoside intercalated organo-montmorillonite promoted biomimetic alginate/microcrystalline cellulose/nano-hydroxyapatite composite hydrogels for bone tissue engineering. International journal of biological macromolecules. 2025; 310(Pt 2): 143304. https://doi.org/10.1016/j.ijbiomac.2025.143304
- Eivazzadeh-Keihan R., Nokandeh S.M., Aliabad H.A.M., et al. Unveiling the synergy: Biocompatible alginate-cellulose hydrogel loaded with silk fibroin and zinc ferrite nanoparticles for enhanced cell adhesion, and anti-biofilm activity. International journal of biological macromolecules. 2024; 275(Pt 1): 133412. https://doi.org/10.1016/j.ijbiomac.2024.133412

The content is available under the Creative Commons Attribution 4.0 License.
©
This is an open article under the CC BY 4.0 license. Published by the National Medical Research Center for Rehabilitation and Balneology.