Issue 24-4, 2025

Original article

Intermittent Theta Burst Stimulation of the Primary Motor Cortex in the Correction of Motor Symptoms in Parkinson's Disease: a Randomized Controlled Study



ORCIDGeorgii A. Kotsoev*, ORCIDEkaterina Yu. Fedotov, ORCIDIlya S. Bakulina, ORCIDAlexandra G. Poydasheva, ORCIDDmitry Yu. Lagoda, ORCIDAlfiia Kh. Zabirova, ORCIDNatalia A. Suponeva

Russian Сenter of Neurology and Neurosciences, Moscow, Russia


ABSTRACT

INTRODUCTION.  Postural disorders are a significant issue among Parkinson’s disease (PD) patients. Therapeutic transcranial magnetic stimulation (tTMS), specifically theta burst stimulation (TBS) protocols, is a promising rehabilitation method. Though tTMS efficacy in terms of motor improvement was shown, its efficacy for postural disorders treatment is questionable.

AIM.  To study the efficacy of bilateral primary motor core (M1) intermittent theta burst stimulation (iTBS) in PD patients.

MATERIALS AND METHODS.  24 PD patients, aged 42–75 years, with II and III Hoehn — Yahr stages were selected as part of this double-blinded, sham-controlled, randomized study. 10 sessions were performed both in active (M1 group) and sham (sham group) stimulation. All tests were performed both in off- and on- states, 4 times altogether: before and shortly after the course, then 1 and 3 months after the course. MDS-UPDRS, Berg balance scale, 10-meter walking test and stabilometric tests (Romberg test and dynamic stability test), performed with the Stabilan-01-2 complex, were used as assessment tools. Statistical analysis was performed with the IBM SPSS Statistics 27.

RESULTS AND DISCUSSION.  In M1 group there was a short-term motor improvement by 5 points (12.6 %) according to part III of MDS UPDRS in off state, and a long-term postural stability improvement in both states. Stabilometry results showed long-term improvement in dynamic stability test in M1 group in both states; the only significant group effect was also found. Adverse events (AE) did not significantly differ in prevalence and severity between the two groups; no life-threatening AE were observed. M1 iTBS has a moderate positive effect on motor and postural disorders in PD patients. The observed trends (mostly off state improvement and postural stability improvement) lead to suggestion of stimulation acting through both dopaminergic and dopamine-independent pathways. The protocol appears to be safe and tolerable.

CONCLUSION.  Bilateral M1 iTBS does not appear to have a definite effect on motor and postural disorders in PD patients. Nevertheless, given its tendency to have a positive effect and its good safety and tolerability profile, further research is essential.


KEYWORDS: Parkinson’s disease, transcranial magnetic stimulation, primary motor core, physical rehabilitation

FOR CITATION:

Kotsoev G.A., Fedotova E.Yu., Bakulin I.S., Poydasheva A.G., Lagoda D.Yu., Zabirova A.Kh., Suponeva N.A. Intermittent Theta Burst Stimulation of the Primary Motor Cortex in the Correction of Motor Symptoms in Parkinson’s Disease: a Randomized Controlled Study. Bulletin of Rehabilitation Medicine. 2025; 24(4):76–88. https://doi.org/10.38025/2078-1962-2025-24-4-76-88 (In Russ.). 

FOR CORRESPONDENCE:

Georgii A. Kotsoev, Е-mail: kotsoev@neurology.ru


References:

  1. Postuma R.B., Berg D., Stern M., et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015; 30(12): 1591–1601. https://doi.org/10.1002/mds.26424
  2. Stolze H., Klebe S., Zechlin C., et al. Falls in frequent neurological diseases — prevalence, risk factors and aetiology. J Neurol. 2004; 251(1): 79–84. https://doi.org/10.1007/s00415-004-0276-8
  3. Debû B., De Oliveira Godeiro C., Lino J.C., Moro E. Managing Gait, Balance, and Posture in Parkinson’s Disease. Curr Neurol Neurosci Rep. 2018; 18(5): 23. https://doi.org/10.1007/s11910-018-0828-4
  4. Valero-Cabré A., Amengual J.L., Stengel C., et al. Transcranial magnetic stimulation in basic and clinical neuroscience: A comprehensive review of fundamental principles and novel insights. Neurosci Biobehav Rev. 2017; 83: 381–404. https://doi.org/10.1016/j.neubiorev.2017.10.006
  5. Burke M.J., Fried P.J., Pascual-Leone A. Transcranial magnetic stimulation: Neurophysiological and clinical applications. Handb Clin Neurol. 2019; 163: 73–92. https://doi.org/10.1016/B978-0-12-804281-6.00005-7
  6. Fitzgerald P.B., Fountain S., Daskalakis Z.J. A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin Neurophysiol. 2006; 117(12): 2584–2596. https://doi.org/10.1016/j.clinph.2006.06.712
  7. Lefaucheur J.P., Aleman A., Baeken C., et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin Neurophysiol. 2020; 131(2): 474–528. https://doi.org/10.1016/j.clinph.2019.11.002
  8. Chen K.S., Chen R. Invasive and Noninvasive Brain Stimulation in Parkinson’s Disease: Clinical Effects and Future Perspectives. Clin Pharmacol Ther. 2019; 106(4): 763–775. https://doi.org/10.1002/cpt.1542
  9. Bologna M., Merola A., Ricciardi L. Editorial: Innovative Technologies and Clinical Applications for Invasive and Non-invasive Neuromodulation: From the Workbench to the Bedside. Front Neurol. 2020; 10: 1350. https://doi.org/10.3389/fneur.2019.01350
  10. Underwood C.F., Parr-Brownlie L.C. Primary motor cortex in Parkinson’s disease: Functional changes and opportunities for neurostimulation. Neurobiol Dis. 2021; 147: 105159. https://doi.org/10.1016/j.nbd.2020.105159
  11. Strafella A.P., Paus T., Fraraccio M., Dagher A. Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex. Brain. 2003;126(Pt 12): 2609–2615. https://doi.org/10.1093/brain/awg268
  12. Strafella A.P., Ko J.H., Grant J., et al. Corticostriatal functional interactions in Parkinson’s disease: a rTMS/[11C]raclopride PET study. Eur J Neurosci. 2005; 22(11): 2946–2952. https://doi.org/10.1111/j.1460–9568.2005.04476.x
  13. Yang C., Guo Z., Peng H., et al. Repetitive transcranial magnetic stimulation therapy for motor recovery in Parkinson’s disease: A Meta-analysis. Brain Behav. 2018; 8(11): e01132. https://doi.org/10.1002/brb3.1132
  14. Deng S., Dong Z., Pan L., et al. Effects of repetitive transcranial magnetic stimulation on gait disorders and cognitive dysfunction in Parkinson’s disease: A systematic review with meta-analysis. Brain Behav. 2022; 12(8): e2697. https://doi.org/10.1002/brb3.2697
  15. Cheng B., Zhu T., Zhao W., et al. Effect of Theta Burst Stimulation-Patterned rTMS on Motor and Nonmotor Dysfunction of Parkinson’s Disease: A Systematic Review and Metaanalysis. Front Neurol. 2022; 12: 762100. https://doi.org/10.3389/fneur.2021.762100
  16. Карпова Е.А. Постуральные нарушения при болезни Паркинсона (клинико-стабилометрический анализ). Диссертация кандидата медицинских наук. ФГБНУ НЦН. Москва. 2003. [Karpova E.A. Postural disorders in Parkinson’s disease (clinical and stabilometric analysis). Dissertation of candidate of medical sciences. FGBNU NCN. Moscow. 2003 (In Russ.).]
  17. Афтанас Л.И., Брак И.В., Куликова К.И. и др. Клинические и нейрофизиологические эффекты терапевтической сочетанной высокочастотной ритмической транскраниальной магнитной стимуляции моторной и лобной коры при болезни Паркинсона. Журнал неврологии и психиатрии им. С.С. Корсакова. 2020; 120(5): 29–36. https://doi.org/10.17116/jnevro202012005129 [Aftanas L.I., Brack I.V., Kulikova K.I., et al. Clinical and neurophysiological effects of dual-target high-frequency rTMS over the primary motor and prefrontal cortex in Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2020; 120(5): 29–36. https://doi.org/10.17116/jnevro202012005129 (In Russ.).]
  18. Кашежев А.Г., Синкин М.В., Куликов А.Г., Левин О.С. Влияние ритмической транскраниальной магнитной стимуляции на динамику моторных и немоторных проявлений болезни Паркинсона. Вопросы курортологии, физиотерапии и лечебной физической культуры. 2019; 96(6): 17–21. https://doi.org/10.17116/kurort20199606117 [Kashezhev A.G., Sinkin M.V., Kulikov A.G., Levin O.S. Impact of rhythmic transcranial magnetic stimulation on the dynamics of motor and non-motor manifestations of Parkinson’s disease. Problems of Balneology, Physiotherapy and Exercise Therapy. 2019; 96(6): 17–21. https://doi.org/10.17116/kurort20199606117 (In Russ.).]
  19. Okada K.I., Takahira M., Mano T., et al. Concomitant improvement in anti-saccade success rate and postural instability gait difficulty after rTMS treatment for Parkinson’s disease. Sci Rep. 2021; 11(1): 2472. https://doi.org/10.1038/s41598-021-81795-3
  20. Schade S., Mollenhauer B., Trenkwalder C. Levodopa Equivalent Dose Conversion Factors: An Updated Proposal Including Opicapone and Safinamide. Mov Disord Clin Pract. 2020; 7(3): 343–345. https://doi.org/10.1002/mdc3.12921
  21. Benninger D.H., Berman B.D., Houdayer E., et al. Intermittent theta-burst transcranial magnetic stimulation for treatment of Parkinson disease. Neurology. 2011; 76(7): 601–609. https://doi.org/10.1212/WNL.0b013e31820ce6bb
  22. Börnke Ch., Schulte T., Przuntek H., Müller T. Clinical effects of repetitive transcranial magnetic stimulation versus acute levodopa challenge in Parkinson’s disease. J Neural Transm Suppl. 2004; Suppl. (68): 61–67. https://doi.org/10.1007/978-3-7091-0579-5_7
  23. Makkos A., Pál E., Aschermann Z., et al. High-Frequency Repetitive Transcranial Magnetic Stimulation Can Improve Depression in Parkinson’s Disease: A Randomized, Double-Blind, Placebo-Controlled Study. Neuropsychobiology. 2016; 73(3): 169–177. https://doi.org/10.1159/000445296
  24. Khedr E.M., Al-Fawal B., Abdel Wraith A., et al. The Effect of 20 Hz versus 1 Hz Repetitive Transcranial Magnetic Stimulation on Motor Dysfunction in Parkinson’s Disease: Which Is More Beneficial? J Parkinsons Dis. 2019; 9(2): 379–387. https://doi.org/10.3233/JPD-181540
  25. Khedr E.M., Mohamed K.O., Ali A.M., Hasan A.M. The effect of repetitive transcranial magnetic stimulation on cognitive impairment in Parkinson’s disease with dementia: Pilot study. Restor Neurol Neurosci. 2020; 38(1): 55–66. https://doi.org/10.3233/RNN-190956
  26. Lefaucheur J.P., Drouot X., Von Raison F., et al. Improvement of motor performance and modulation of cortical excitability by repetitive transcranial magnetic stimulation of the motor cortex in Parkinson’s disease. Clin Neurophysiol. 2004; 115(11): 2530–2541. https://doi.org/10.1016/j.clinph.2004.05.025
  27. Khedr E.M., Rothwell J.C., Shawky O.A., et al. Effect of daily repetitive transcranial magnetic stimulation on motor performance in Parkinson’s disease. Mov Disord. 2006; 21(12): 2201–2205. https://doi.org/10.1002/mds.21089
  28. Yokoe M., Mano T., Maruo T., et al. The optimal stimulation site for high-frequency repetitive transcranial magnetic stimulation in Parkinson’s disease: A double-blind crossover pilot study. J Clin Neurosci. 2018; 47: 72–78. https://doi.org/10.1016/j.jocn.2017.09.023
  29. Benninger D.H., Iseki K., Kranick S., et al. Controlled study of 50-Hz repetitive transcranial magnetic stimulation for the treatment of Parkinson disease. Neurorehabil Neural Repair. 2012; 26(9): 1096–1105. https://doi.org/10.1177/1545968312445636
  30. Degardin A., Devos D., Defebvre L., et al. Effect of intermittent theta-burst stimulation on akinesia and sensorimotor integration in patients with Parkinson’s disease. Eur J Neurosci. 2012; 36(5): 2669–2678. https://doi.org/10.1111/j.1460-9568.2012.08158.x
  31. Grimbergen Y.A., Langston J.W., Roos R.A., Bloem B.R. Postural instability in Parkinson’s disease: the adrenergic hypothesis and the locus coeruleus. Expert Rev Neurother. 2009; 9(2): 279–290. https://doi.org/10.1586/14737175.9.2.279
  32. Müller M.L., Bohnen N.I. Cholinergic dysfunction in Parkinson’s disease. Curr Neurol Neurosci Rep. 2013; 13(9): 377. https://doi.org/10.1007/s11910-013-0377-9
  33. McDonald J., Corbeil P., Pourcher E. Balance control improves following replacement of paroxetine with venlafaxine and levodopa in a case of microvascular dementia. Am J Geriatr Pharmacother. 2011;9(2): 133–137. https://doi.org/10.1016/j.amjopharm.2011.03.002
  34. Chung K.A., Lobb B.M., Nutt J.G., Horak F.B. Effects of a central cholinesterase inhibitor on reducing falls in Parkinson disease. Neurology. 2010; 75(14): 1263–1269. https://doi.org/10.1212/WNL.0b013e3181f6128c
  35. Ickenstein G.W., Ambach H., Klöditz A., et al. Static posturography in aging and Parkinson’s disease. Front Aging Neurosci. 2012; 4: 20. https://doi.org/10.3389/fnagi.2012.00020
  36. Brys M., Fox M.D., Agarwal S., et al. Multifocal repetitive TMS for motor and mood symptoms of Parkinson disease: A randomized trial. Neurology. 2016; 87(18): 1907–1915. https://doi.org/10.1212/WNL.0000000000003279
  37. Бакулин И.С., Пойдашева А.Г., Лагода Д.Ю. и др. Безопасность и переносимость различных протоколов высокочастотной ритмической транскраниальной магнитной стимуляции. Ульяновский медико-биологический журнал. 2019; 1: 26–37. https://doi.org/10.34014/2227-1848-2019-1-26-37 [Bakulin I.S., Poydasheva A.G., Lagoda D.Yu., et al. Safety and tolerability of different protocols of high-frequency rhythmic transcranial magnetic stimulation. Ulyanovsk Medico-biological Journal 2019; 1: 26–37. https://doi.org/10.34014/2227-1848-2019-1-26-37 (In Russ.).]



Creative Commons License
The content is available under the Creative Commons Attribution 4.0 License.

©


This is an open article under the CC BY 4.0 license. Published by the National Medical Research Center for Rehabilitation and Balneology.