Issue 24-4, 2025

Original article

Ultrastructural Analysis of Mitochondria in Rat Adrenal Cortex Cells Exposed to Electromagnetic Radiation and Drinking Mineral Water



ORCIDYury N. Korolev*, ORCIDLiudmila A. Nikulina, ORCIDLyubov V. Michailik

National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia


ABSTRACT

INTRODUCTION.  The application of therapeutic physical factors, different in their nature, such as low-intensity ultrahigh frequency electromagnetic radiation (UHF EMR) and drinking sulphated mineral water (MW), causes the increase of regeneration processes of intracellular ultrastructures, including mitochondria. Meanwhile, the mechanisms of development of these adaptation reactions remain understudied. Further study of mitochondria exposed to microwave EMR and drinking sulfate MW should be carried out in cells of the of the fascicular zone of the adrenal glands — adrenocorticocytes (ACC), which play an important role in regulating adaptation processes in the body.

AIM.  To study the nature and development features of adaptive ultrastructural changes in the mitochondria of the ACC of the fascicular zone of the adrenal glands of rats that are exposed to microwave EMR and drinking sulfate MW.

MATERIALS AND METHODS.  Experiments were conducted on 23 white nonlinear male rats. All animals were divided into groups: the 1st experimental group — the effect of microwave EMR; control — false procedures (without turning on the device). The 2nd experimental group — the effect of drinking sulfate MW; control — tap water. A group of intact animals was also used. A course of microwave EMR (10 procedures) was performed on the lumbar region (the area of projection of the adrenal glands) using the Aquaton — 2 devices (power flow area of 1 MW/cm2, frequency of about 1000 MHz, exposure time 2 minute). Drinking magnesium-calcium-sodium sulfate MV (sulfate ion concentration — 1.93 g/l, mineralization — 3.05 g/l) was administered intragastrically in 3 ml, for a total of 16 procedures. The object of the study: ACC of the fascicular zone of the adrenal glands. Research methods: transmission electron microscopy, morphometry.

RESULTS AND DISCUSSION.  The use of microwave EMR and drinking sulfate MW caused increased regenerative-hyperplastic processes in ACC mitochondria of varying intensity and increased their bioenergetic potential. The results of the study make it possible to understand the characteristic features in the mechanisms of action of microwave EMR and drinking sulfate MW on the processes of regeneration and bioenergetic adaptation in ACC mitochondria, which should be taken into account when developing new methods of prevention and rehabilitation in the clinic.

CONCLUSION.  The use of microwave EMR and drinking sulfate MW caused increased regenerative-hyperplastic processes in ACC mitochondria of varying intensity and increased their bioenergetic potential. The results of the study make it possible to understand the characteristic features in the mechanisms of action of microwave EMR and drinking sulfate MW on the processes of regeneration and bioenergetic adaptation in ACC mitochondria, which should be taken into account when developing new methods of prevention and rehabilitation in the clinic.


KEYWORDS: mitochondria, organoid and intraorganoid forms of regeneration, adrenocorticocytes, electromagnetic radiation, drinking sulfate mineral water, experiment

FOR CITATION:

Korolev Yu.N., Nikulina L.A., Michailik L.V. Ultrastructural Analysis of Mitochondria in Rat Adrenal Cortex Cells Exposed to Electromagnetic Radiation and Drinking Mineral Water. Bulletin of Rehabilitation Medicine. 2025; 24(4):89–95. https://doi.org/10.38025/2078-1962-2025-24-4-89-95 https://doi.org/10.38025/2078-1962-2025-24-4-89-95 (In Russ.). 

FOR CORRESPONDENCE:

Yury N. Korolev, Е-mail: korolev.yur@yandex.ru, korolevyn@nmicrk.ru


References:

  1. Vega-Vasquez T., Langgartner D., Wang J.Y., et al. Mitochondrial morphology in the mouse adrenal cortex: Influence of chronic psychosocial stress. Psychoneuroendocrinology. 2024; 160(4): 106683. https://doi.org/10.1016/j.psyneuen.2023.106683
  2. Caldeira D.A.F., Weiss D.J., Rieken P.R.M., et al. Mitochondria in focus: from function to therapeutic strategies in chronic lung diseases. Frontiers Immunology. 2021; 12: 782074. https://doi.org/10.3389/fimmu.2021.782074
  3. Bassi G., Sidhu S.K., Mishra M. The Expanding Role of Mitochondria, Autophagy and Lipophagy in Steroidogenesis. Frontiers Immunology. 2021; 10(8): 1851. https://doi.org/10.3390/cells10081851
  4. Valero-Ochando J., Canto A., Lopez-Pedrajas R., et al. Role of Gonadal steroid hormones in the eyes: therapeutic implication. Biomolecules. 2024; 14(10): 1262. https://doi.org/10.3390/biom14101262
  5. Garci M.M., Paz., Castillo A., et al. New insights into signal transduction pathways in adrenal steroidogenesis: the role of mitochondrial fusion, lipid mediators, and MARC phosphatase. Frontiers endocrinology. 2023; 14: 1175677. https://doi.org/10.3389/fendo.2023.1175677
  6. Rong Yu., Lendah U., Nister M., Zhao J. Regulation of mammalian mitochondrial dynamics: opportunities and challenges. Frontiers Endocrinology 2020; 11: 374. https://doi.org/10.3389/fendo.2020.00374
  7. Ferry A., Shirihai O. Mitochondrial dynamics: The Intersection of form and Function. Advance in Experimental Medicine and Biology. 2012; 748: 13–40. https://doi.org/10.1007/978-1-4614-3573-0_2
  8. Yule R.J., Van der Blick A.M. Mitochondrial fission, fusion, and stress. Science. 2012; 337(6098): 1062–1065. https://doi.org/10.1126/science.1219855
  9. Birch J., Barnes P., Passos J.F. Mitochondria, telomeres, and cell aging: implications for lung aging and disease. Pharmacology 2018. 183: 34–49. https://doi.org/10.1016/j.pharmthera.2017.10.005
  10. Бакеева Л.Е. Возраст-зависимые изменения ультраструктуры митохондрий. Действие SkQ1. Биохимия. 2015; 8(12): 1843–1850. [Bakeeva L.E. Age-dependent changes in the ultrastructure of mitochondria. SkQ1 action. Biochimiya. 2015; 8(12): 1843–1850 (In Russ.).]
  11. Франциянц Е.М., Нескубина И.В., Шейко Е.А. Митохондрии трансформированной клетки как мишень противоопухолевого воздействия. Исследования и практика в медицине. 2020; 7(2): 92–108. https://doi.org/10.17709/2409-2231-2020-7-2-9 [Franzyants E.M., Neskubina I.V., Sheiko E.A. Mitochondria of transformed cell as a target of antitumor. Research and Practical Medicine Journal.2020; 7(2): 92–108. https://doi.org/10.17709/2409-2231-2020-7-2-9 (In Russ.).]
  12. Королев Ю.Н., Михайлик Л.В., Никулина Л.А. Механизмы действия питьевой сульфатной минеральной воды при первичном профилактическом и лечебном применении в условиях экспериментального стресса: сравнительный анализ. Вестник восстановительной медицины 2023; 22(4): 3–10. https://doi.org/10.38025/2078-1962-2023-22-4-90-95 [Korolev Y.N., Mikhailik L.V., Nikulina L.A. Drinking Sulphate Mineral Water Action Mechanisms at Primary Preventive and Therapeutic Application under Experimental Stress: a Comparative Analysis. Bulletin of Rehabilitation Medicine. 2023: 22(4): 3–10. https://doi.org/10.38025/2078-1962-2023-22-4-90-95 (In Russ).]
  13. Королев Ю.Н., Никулина Л.А., Михайлик Л.В. Влияние низкоинтенсивного электромагнитного излучения на структурно-метаболические процессы у здоровых крыс. Вестник восстановительной медицины.2019; 6 (94): 60–62. [Korolev Yu.N., Nikulina L.A., Mikhailik L.V. Effect of low-intensity electromagnetic radiation on structural and metabolic processes in healthy rats. Journal of Restorative Medicine and Rehabilitation. 2019; 6(94): 60–62 (In Russ.).]
  14. Королев Ю.Н., Михайлик Л.В., Никулина Л.А. Сочетанное действие питьевой сульфатной минеральной воды и низкоинтенсивного электромагнитного излучения на семенники крыс при метаболическом синдроме. Вестник восстановительной медицины.2022; 21(6): 127–133. https://doi.org/10.38025/2078-1962-2022-21-6-127-133 [Korolev Yu.N., Mikhailik L.V., Nikulina L.A. Drinking Mineral Water and Low-Intensity Electromagnetic Radiation Combinational Effect on Rat Testes in Metabolic Syndrome: а Randomized Controlled Study. Bulletin of Rehabilitation Medicine. 2022; 21(6): 127–133. https://doi.org/10.38025/2078-1962-2022-21-6-127-133 (In Russ.).]
  15. Glancy B., Balaban R.S. Role of mitochondrial Ca2+ the in regulation of cellular energetics. Biochemistry 2012; 51: 2959–2573. https://doi.org/10.1021/bi2018909
  16. Jeyaraju D.V., Cisbani G., Pellegrini L. Calcium regulation of mitochondrial motility and morphology. Biochimica Biochysica Acta 2009; 1787(11): 13631373. https://doi.org/10.1016/j.bbabio.2008.12.005
  17. Царегородцев А.Д., Сухоруков В.С. Митохондриальная медицина — проблемы и задачи. Российский вестник перинатологии и педиатрии. 2021; 4(2): 4–13. [Tsaregorodtsev A.D. Sukhorukov V.S. Mitochondrial medicine — problems and tasks. Russian Bulletin of Perinatology and Pediatrics. 2021; 4(2): 4–13 (In Russ).].



Creative Commons License
The content is available under the Creative Commons Attribution 4.0 License.

©


This is an open article under the CC BY 4.0 license. Published by the National Medical Research Center for Rehabilitation and Balneology.