Issue 24-5, 2025

Review

Effectiveness of Physical Exercise in Arterial Hypertension: a Systematic Review and Network Meta-Analysis



ORCIDAlexander V. Meshtel1,*, ORCIDAlexandr B. Miroshnikov1, ORCIDPolina D. Rybakova2, ORCIDAndrei V. Smolensky1

1 Russian University of Sports "GTSOLIFK", Moscow, Russia
2 Moscow Center of Advanced Sport Technologies, Moscow, Russia


ABSTRACT

Резюме (EN):

INTRODUCTION.  Cardiovascular diseases, especially coronary heart disease and strokes, are the leading cause of death (31 % of cases), with hypertension being a key risk factor. Physical exercise, including moderate continuous training and high-intensity interval training, has been proven to reduce blood pressure, but the optimal protocol remains a matter of debate.

AIM.  To compare the effectiveness of different physical activity regimens in reducing blood pressure and improving cardiorespiratory fitness in patients with arterial hypertension.

MATERIALS AND METHODS.  The search was conducted in PubMed, eLIBRARY.RU, Google Scholar, and other databases using standardized PICOS criteria, including only RCTs with an intervention duration of ≥ 2 weeks. The analysis was performed with an assessment of the risk of bias (Rob 2), reliability of evidence (GRADE), and statistical models (SUCRA, node-splitting), including meta-regression to account for covariates. The results are presented as mean differences (MD) with 95 % CI.

RESULTS AND DISCUSSION.  Of the 9,462 publications, 67 studies (4,466 participants) remained after elimination of duplicates and screening. Seven physical training protocols were analyzed (high volume high intensity interval training (HV-HIIT), Low volume HIIT (LV-HIIT), moderate continuous training (MICT), combined MICT + strength training (MICT + RT), Strength training (RT), Circuit training and control group (CON)). Among all the interventions, HV-HIIT demonstrated the greatest effectiveness in reducing office systolic blood pressure (SBP) (–6.85 mmHg (–9.20; –4.50); high level of evidence), whereas MICT + RT proved to be the most effective for lowering diastolic blood pressure (DBP) (–4.80 mmHg (–6.74; –2.84); moderate level of evidence). The central pulse wave velocity (CPWV) decreased most significantly with HV-HIIT (–1.33 m/s (–1.58; –1.08); moderate evidence), and maximum oxygen consumption (VO2max) increased with the same protocol (+6.38 ml/kg/min (4.91; 7.84); high evidence). Circuit training and resistance training (RT) showed the least effectiveness in reducing blood pressure and improving cardiorespiratory parameters.

CONCLUSION.  The study demonstrates that HV-HIIT is the most effective method for reducing systolic blood pressure (SBP) and improving cardiorespiratory endurance (VO2max), while MICT + RT reduces DBP better. However, data on DBP needs to be clarified due to the heterogeneity of power programs. Long-term studies are needed to clarify the effects of different HIIT protocols on hypertension and to classify training regimens in more detail.

REGISTRATION:   PROSPERO identifier No. CRD420250655946, registered 22.02.2025.


KEYWORDS: hypertension, high blood pressure, exercise, rehabilitation, cardiorespiratory fitness

FOR CITATION:

Meshtel A.V., Miroshnikov A.B., Rybakova P.D., Smolensky A.V. Effectiveness of Physical Exercise in Arterial Hypertension: a Systematic Review and Network Meta-Analysis. Bulletin of Rehabilitation Medicine. 2025; 24(5):8–26. https://doi.org/10.38025/2078-1962-2025-24-5-8-26 (In Russ.). 

FOR CORRESPONDENCE:

Alexander V. Meshtel, Е-mail: meshtel.author@yandex.ru


References:

  1. Roth G.A., Abate D., Abate K.H., et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018; 392: 1736–1788. https://doi.org/10.1016/s0140-6736(18)32203-7
  2. Lim S.S., Vos T., Flaxman A.D., et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012; 380: 2224–2260. https://doi.org/10.1016/S0140-6736(12)61766-8
  3. Edwards J.J., Deenmamode A.H.P., Griffiths M., et al. Exercise training and resting blood pressure: a large-scale pairwise and network meta-analysis of randomised controlled trials. Br J Sports Med. 2023; 57(20): 1317–1326. https://doi.org/10.1136/bjsports-2022-106503
  4. Jabbarzadeh Ganjeh B., Zeraattalab-Motlagh S., Jayedi A., et al. Effects of aerobic exercise on blood pressure in patients with hypertension: a systematic review and dose-response meta-analysis of randomized trials. Hypertens Res. 2024; 47(2): 385–398. https://doi.org/10.1038/s41440-023-01467-9
  5. Henkin J.S., Pinto R.S., Machado C.L.F., Wilhelm E.N. Chronic effect of resistance training on blood pressure in older adults with prehypertension and hypertension: a systematic review and meta-analysis. Exp Gerontol. 2023; 177: 112193. https://doi.org/10.1016/j.exger.2023.112193
  6. Gao W., Lv M., Huang T. Effects of different types of exercise on hypertension in middle-aged and older adults: a network meta-analysis. Front Public Health. 2023; 11: 1194124. https://doi.org/10.3389/fpubh.2023.1194124
  7. Yang D., Tao S., Shao M., et al. Effectiveness of exercise training on arterial stiffness and blood pressure among postmenopausal women: a systematic review and meta-analysis. Syst Rev. 2024; 13(1): 169. https://doi.org/10.1186/s13643-024-02589-y
  8. Aispuru-Lanche R., Jayo-Montoya J.A., Maldonado-Martín S. Vascular-endothelial adaptations following low and high volumes of high-intensity interval training in patients after myocardial infarction. Ther Adv Cardiovasc Dis. 2024; 18: 17539447241286036. https://doi.org/10.1177/17539447241286036
  9. Hutton B., Salanti G., Caldwell D.M., et al. The PRISMA Extension Statement for Reporting of Systematic Reviews Incorporating Network Meta-analyses of Health Care Interventions: Checklist and Explanations. Ann Intern Med. 2015; 162(11): 777–784. https://doi.org/10.7326/M14-2385
  10. Moher D., Shamseer L., Clarke M., et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015; 4(1): 1. https://doi.org/10.1186/2046-4053-4-1
  11. Higgins J.P., Sterne J.A., Savovic J., et al. A revised tool for assessing risk of bias in randomized trials. Cochrane Database Syst Rev. 2016; 10: 29–31.
  12. McGuinness L.A., Higgins J.P.T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res Syn Meth. 2020; 1–7. https://doi.org/10.1002/jrsm.1411
  13. Puhan M.A., Schünemann H.J., Murad M.H., et al. A GRADE Working Group approach for rating the quality of treatment effect estimates from network meta-analysis. BMJ. 2014; 349: g5630.
  14. Brignardello-Petersen R., Bonner A., Alexander P.E., et al. Advances in the GRADE approach to rate the certainty in estimates from a network meta-analysis. J Clin Epidemiol. 2018; 93: 36–44.
  15. Chaimani A., Higgins J.P., Mavridis D., et al. Graphical tools for network meta-analysis in STATA. PLoS ONE. 2013; 8: e76654. https://doi.org/10.1371/journal.pone.0076654
  16. Ferreira M.L.V., Castro A., Nunes S.G.O., et al. Hemodynamic Predictors of Blood Pressure Responsiveness to Continuous Aerobic Training in Postmenopausal Hypertensive Women. Metab Syndr Relat Disord. 2023 Nov; 21(9): 517–525. https://doi.org/10.1089/met.2023.0032
  17. Edwards J.J., Taylor K.A., Cottam C., et al. Ambulatory blood pressure adaptations to high-intensity interval training: a randomized controlled study. J Hypertens. 2021; 39(2): 341–348. https://doi.org/10.1097/HJH.0000000000002630
  18. Aghaei Bahmanbeglou N., Ebrahim K., Maleki M., et al. Short-duration high-intensity interval exercise training is more effective than long duration for blood pressure and arterial stiffness but not for inflammatory markers and lipid profiles in patients with stage 1 hypertension. J Cardiopulm Rehabil Prev. 2019; 39(1): 50–55. https://doi.org/10.1097/HCR.0000000000000377
  19. de Oliveira G.H., Boutouyrie P., Simões C.F., et al. The impact of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on arterial stiffness and blood pressure in young obese women: a randomized controlled trial. Hypertens Res. 2020; 43(11): 1315–1318. https://doi.org/10.1038/s41440-020-0477-2
  20. Alvarez C., Peñailillo L., Ibacache-Saavedra P., et al. Six weeks of a concurrent training therapy improves endothelial function and arterial stiffness in hypertensive adults with minimum non-responders. Hipertens Riesgo Vasc. 2024; 41(4): 240–250. https://doi.org/10.1016/j.hipert.2024.07.001
  21. Bavaresco Gambassi B., Chaves L.F.C., Sousa T.M.D.S., et al. Short-duration dynamic power training with elastic bands combined with endurance training: a promising approach to hypertension management in older adults. J Hypertens. 2024; 42(4): 735–742. https://doi.org/10.1097/HJH.0000000000003681
  22. Fang H., Liu C., Cavdar O. The relation between submaximal aerobic exercise improving vascular elasticity through loss of visceral fat and antihypertensive. Clin Exp Hypertens. 2021; 43(3): 203–210. https://doi.org/10.1080/10641963.2020.1847127
  23. Abrahin O., Abrahin R.P., Guimarães M., et al. Blood pressure responsiveness to resistance training in the hypertensive older adult: a randomized controlled study. Blood Press Monit. 2024; 29(2): 71–81. https://doi.org/10.1097/MBP.0000000000000690
  24. Abrahin O., Abrahin R.P., de Sousa E.C., et al. Inter-individual variations in response to aerobic and resistance training in hypertensive older adults. J Hypertens. 2022; 40(6): 1090–1098. https://doi.org/10.1097/HJH.0000000000003139
  25. Phoemsapthawee J., Sriton B. Combined exercise training improves blood pressure at rest and during exercise in young obese prehypertensive men. J Sports Med Phys Fitness. 2021; 61(3): 468–479. https://doi.org/10.23736/S0022-4707.20.11222-2
  26. Lopes S., Mesquita-Bastos J., Garcia C., et al. Aerobic exercise improves central blood pressure and blood pressure variability among patients with resistant hypertension: results of the EnRicH trial. Hypertens Res. 2023; 46(6): 1547–1557. https://doi.org/10.1038/s41440-023-01229-7
  27. Roque Marçal I., Teixeira Do Amaral V., Fernandes B., et al. Acute high-intensity interval exercise versus moderate-intensity continuous exercise in heated water-based on hemodynamic, cardiac autonomic, and vascular responses in older individuals with hypertension. Clin Exp Hypertens. 2022; 44(5): 427–435. https://doi.org/10.1080/10641963.2022.2065288
  28. Montero D., Vinet A., Roberts C.K. Effect of combined aerobic and resistance training versus aerobic training on arterial stiffness. Int J Cardiol. 2015; 178: 69–76. https://doi.org/10.1016/j.ijcard.2014.10.147
  29. Saz-Lara A., Cavero-Redondo I., Álvarez-Bueno C., et al. What type of physical exercise should be recommended for improving arterial stiffness on adult population? A network meta-analysis. Eur J Cardiovasc Nurs. 2021; 20(7): 696–716. https://doi.org/10.1093/eurjcn/zvab022
  30. Lopes S., Afreixo V., Teixeira M., et al. Exercise training reduces arterial stiffness in adults with hypertension: a systematic review and meta-analysis. J Hypertens. 2021; 39(2): 214–222. https://doi.org/10.1097/HJH.0000000000002619
  31. Форменов А.Д. Влияние аэробных упражнений, выполненных разными мышечными группами, на артериальное давление: (литературный обзор). Спорт и спортивная медицина: материалы международной научно-практической конференции, посвященной 40-летию со дня основания Чайковского государственного института физической культуры. Чайковский. 09–11 апреля 2020 года. 2020; 391–399. [Formenov A.D. The effect of aerobic exercises performed by different muscle groups on blood pressure: (literature review). Sport and Sports Medicine: proceedings of the international scientific-practical conference dedicated to the 40th anniversary of the foundation of the Chaikovsky State Institute of Physical Culture. Chaikovsky. April 9–11, 2020; 391–399 (In Russ.).]
  32. Oliveira G.H., Okawa R.T.P., Simões C.F., et al. Effects of High-Intensity Interval Training on Central Blood Pressure: A Systematic Review and Meta-Analysis. Arq Bras Cardiol. 2023; 120(4): e20220398. https://doi.org/10.36660/abc.20220398
  33. Gorostegi-Anduaga I., Corres P., MartinezAguirre-Betolaza A., et al. Effects of different aerobic exercise programmes with nutritional intervention in sedentary adults with overweight/obesity and hypertension: EXERDIET-HTA study. Eur J Prev Cardiol. 2018; 25(4): 343–353. https://doi.org/10.1177/2047487317749956
  34. Taha M.M., Aneis Y.M., Hasanin M.E., et al. Effect of high intensity interval training on arterial stiffness in obese hypertensive women: a randomized controlled trial. Eur Rev Med Pharmacol Sci. 2023; 27(9): 4069–4079. https://doi.org/10.26355/eurrev_202305_32314
  35. Beck D.T., Martin J.S., Casey D.P., et al. Exercise training reduces peripheral arterial stiffness and myocardial oxygen demand in young prehypertensive subjects. Am J Hypertens. 2013; 26(9): 1093–1102. https://doi.org/10.1093/ajh/hpt080
  36. Mora-Rodriguez R., Ramirez-Jimenez M., Fernandez-Elias V.E., et al. Effects of aerobic interval training on arterial stiffness and microvascular function in patients with metabolic syndrome. J Clin Hypertens. 2018; 20(1): 11–18. https://doi.org/10.1111/jch.13130
  37. Müller C., Hauser C., Carrard J., et al. Effects of high-intensity interval training on retinal vessel diameters and oxygen saturation in patients with hypertension: A cross-sectional and randomized controlled trial. Microvasc Res. 2024; 151: 104616. https://doi.org/10.1016/j.mvr.2023.104616
  38. Izadi M.R., Ghardashi Afousi A., Asvadi Fard M., et al. High-intensity interval training lowers blood pressure and improves apelin and NOx plasma levels in older treated hypertensive individuals. J Physiol Biochem. 2018; 74(1): 47–55. https://doi.org/10.1007/s13105-017-0602-0
  39. Twerenbold S., Hauser C., Gander J., et al. Short-term high-intensity interval training improves micro- but not macrovascular function in hypertensive patients. Scand J Med Sci Sports. 2023; 33(7): 1231–1241. https://doi.org/10.1111/sms.14343
  40. MartinezAguirre-Betolaza A., Mujika I., Fryer S.M., et al. Effects of different aerobic exercise programs on cardiac autonomic modulation and hemodynamics in hypertension: data from EXERDIET-HTA randomized trial. J Hum Hypertens. 2020; 34(10): 709–718. https://doi.org/10.1038/s41371-020-0298-4
  41. Wegmann M., Hecksteden A., Poppendieck W., et al. Postexercise Hypotension as a Predictor for Long-Term Training-Induced Blood Pressure Reduction: A Large-Scale Randomized Controlled Trial. Clin J Sport Med. 2018; 28(6): 509–515. https://doi.org/10.1097/JSM.0000000000000475
  42. Gentil P., Silva L.R.B.E., Antunes D.E., et al. The effects of three different low-volume aerobic training protocols on cardiometabolic parameters of type 2 diabetes patients: A randomized clinical trial. Front Endocrinol. 2023; 14: 985404. https://doi.org/10.3389/fendo.2023.985404
  43. Clark T., Morey R., Jones M.D., et al. High-intensity interval training for reducing blood pressure: a randomized trial vs. moderate-intensity continuous training in males with overweight or obesity. Hypertens Res. 2020; 43(5): 396–403. https://doi.org/10.1038/s41440-019-0392-6
  44. Eichner N.Z.M., Gaitán J.M., Gilbertson N.M., et al. Postprandial augmentation index is reduced in adults with prediabetes following continuous and interval exercise training. Exp Physiol. 2019; 104(2): 264–271. https://doi.org/10.1113/EP087305
  45. Miura H., Takahashi Y., Maki Y., et al. Effects of exercise training on arterial stiffness in older hypertensive females. Eur J Appl Physiol. 2015; 115(9): 1847–1854. https://doi.org/10.1007/s00421-015-3168-y
  46. Collier S.R., Kanaley J.A., Carhart R. Jr, et al. Effect of 4 weeks of aerobic or resistance exercise training on arterial stiffness, blood flow and blood pressure in pre- and stage-1 hypertensives. J Hum Hypertens. 2008; 22(10): 678–686. https://doi.org/10.1038/jhh.2008.36
  47. Dobrosielski D.A., Gibbs B.B., Ouyang P., et al. Effect of exercise on blood pressure in type 2 diabetes: a randomized controlled trial. J Gen Intern Med. 2012; 27(11): 1453–1459. https://doi.org/10.1007/s11606-012-2103-8
  48. Lamina S. Comparative effect of interval and continuous training programs on serum uric acid in management of hypertension: a randomized controlled trial. J Strength Cond Res. 2011; 25(3): 719–726. https://doi.org/10.1519/JSC.0b013e3181d09edf
  49. Sousa N., Mendes R., Abrantes C., et al. A randomized 9-month study of blood pressure and body fat responses to aerobic training versus combined aerobic and resistance training in older men. Exp Gerontol. 2013; 48(8): 727–733. https://doi.org/10.1016/j.exger.2013.04.008
  50. Мирошников А.Б., Сергеева К.В., Форменов А.Д., Смоленский А.В. Роль интервальной тренировки в физической реабилитации спортсменов силовых видов спорта с артериальной гипертензией: рандомизированное контролируемое исследование. Вопр. курортол. физиотер. и ЛФК. 2020; 97(6): 5–10. https://doi.org/10.17116/kurort2020970615 [Miroshnikov A.B., Sergeeva K.V., Formenov A.D., Smolensky A.V. The role of interval training in the physical rehabilitation of strength sports athletes with hypertension: a randomized controlled study. Problems of Balneology, Physiotherapy and Exercise Therapy. 2020; 97(6): 5–10. https://doi.org/10.17116/kurort2020970615 (In Russ.).]
  51. Caminiti G., Iellamo F., Mancuso A., et al. Effects of 12 weeks of aerobic versus combined aerobic plus resistance exercise training on short-term blood pressure variability in patients with hypertension. J Appl Physiol. 2021; 130(4): 1085–1092. https://doi.org/10.1152/japplphysiol.00910.2020
  52. Schroeder E.C., Franke W.D., Sharp R.L., et al. Comparative effectiveness of aerobic, resistance, and combined training on cardiovascular disease risk factors: A randomized controlled trial. PLoS One. 2019; 14(1): e0210292. https://doi.org/10.1371/journal.pone.0210292
  53. Alemayehu A., Teferi G. Effectiveness of aerobic, resistance, and combined training for hypertensive patients: A randomized controlled trial. Ethiop J Health Sci. 2023; 33(6): 1063–1074. https://doi.org/10.4314/ejhs.v33i6.17
  54. Dimeo F., Pagonas N., Seibert F., et al. Aerobic exercise reduces blood pressure in resistant hypertension. Hypertension. 2012; 60(3): 653–658. https://doi.org/10.1161/HYPERTENSIONAHA.112.197780
  55. Boeno F.P., Ramis T.R., Munhoz S.V., et al. Effect of aerobic and resistance exercise training on inflammation, endothelial function and ambulatory blood pressure in middle-aged hypertensive patients. J Hypertens. 2020; 38(12): 2501–2509. https://doi.org/10.1097/HJH.0000000000002581
  56. Masroor S., Bhati P., Verma S., et al. Heart rate variability following combined aerobic and resistance training in sedentary hypertensive women: A randomised control trial. Indian Heart J. 2018; 70(Suppl 3): S28–S35. https://doi.org/10.1016/j.ihj.2018.03.005
  57. Madden K.M., Lockhart C., Cuff D., et al. Aerobic training-induced improvements in arterial stiffness are not sustained in older adults with multiple cardiovascular risk factors. J Hum Hypertens. 2013; 27(5): 335–339. https://doi.org/10.1038/jhh.2012.38
  58. Guimarães G.V., Ciolac E.G., Carvalho V.O., et al. Effects of continuous vs. interval exercise training on blood pressure and arterial stiffness in treated hypertension. Hypertens Res. 2010; 33(6): 627–632. https://doi.org/10.1038/hr.2010.42
  59. Westhoff T.H., Franke N., Schmidt S., et al. Too old to benefit from sports? The cardiovascular effects of exercise training in elderly subjects treated for isolated systolic hypertension. Kidney Blood Press Res. 2007; 30(4): 240–247. https://doi.org/10.1159/000104093
  60. Wong A., Kwak Y.S., Scott S.D., et al. The effects of swimming training on arterial function, muscular strength, and cardiorespiratory capacity in postmenopausal women with stage 2 hypertension. Menopause. 2018; 26(6): 653–658. https://doi.org/10.1097/GME.0000000000001288
  61. Headley S., Germain M., Wood R., et al. Blood pressure response to acute and chronic exercise in chronic kidney disease. Nephrology (Carlton). 2017; 22(1): 72–78. https://doi.org/10.1111/nep.12730
  62. Streese L., Pichler F.A., Hauser C., et al. Microvascular wall-to-lumen ratio in patients with arterial hypertension: A randomized controlled exercise trial. Microvasc Res. 2023; 148: 104526. https://doi.org/10.1016/j.mvr.2023.104526
  63. Skrypnik D., Bogdański P., Mądry E., et al. Effects of endurance and endurance strength training on body composition and physical capacity in women with abdominal obesity. Obes Facts. 2015; 8(3): 175–187. https://doi.org/10.1159/000431002
  64. Tjønna A.E., Lee S.J., Rognmo Ø., et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation. 2008; 118(4): 346–354. https://doi.org/10.1161/CIRCULATIONAHA.108.772822
  65. O’Connor E.M., Koufaki P., Mercer T.H., et al. Long-term pulse wave velocity outcomes with aerobic and resistance training in kidney transplant recipients: A pilot randomised controlled trial. PLoS One. 2017; 12(2): e0171063. https://doi.org/10.1371/journal.pone.0171063
  66. Magalhães J.P., Melo X., Correia I.R., et al. Effects of combined training with different intensities on vascular health in patients with type 2 diabetes: a 1-year randomized controlled trial. Cardiovasc Diabetol. 2019; 18(1): 34. https://doi.org/10.1186/s12933-019-0840-2
  67. Mohr M., Nordsborg N.B., Lindenskov A., et al. High-intensity intermittent swimming improves cardiovascular health status for women with mild hypertension. Biomed Res Int. 2014; 2014: 728289. https://doi.org/10.1155/2014/728289
  68. Madden K.M., Lockhart C., Cuff D., et al. Short-term aerobic exercise reduces arterial stiffness in older adults with type 2 diabetes, hypertension, and hypercholesterolemia. Diabetes Care. 2009; 32(8): 1531–1535. https://doi.org/10.2337/dc09-0149
  69. Lopes S., Mesquita-Bastos J., Garcia C., et al. Effect of exercise training on ambulatory blood pressure among patients with resistant hypertension: A randomized clinical trial. JAMA Cardiol. 2021; 6(11): 1317–1323. https://doi.org/10.1001/jamacardio.2021.2735
  70. Sosner P., Gayda M., Dupuy O., et al. Ambulatory blood pressure reduction following 2 weeks of high-intensity interval training on an immersed ergocycle. Arch Cardiovasc Dis. 2019; 112(11): 680–690. https://doi.org/10.1016/j.acvd.2019.07.005
  71. Son W.M., Sung K.D., Cho J.M., et al. Combined exercise reduces arterial stiffness, blood pressure, and blood markers for cardiovascular risk in postmenopausal women with hypertension. Menopause. 2017; 24(3): 262–268. https://doi.org/10.1097/GME.0000000000000765
  72. Stewart K.J., Bacher A.C., Turner K.L., et al. Effect of exercise on blood pressure in older persons: a randomized controlled trial. Arch Intern Med. 2005; 165(7): 756–762. https://doi.org/10.1001/archinte.165.7.756
  73. Bellia A., Iellamo F., De Carli E., et al. Exercise individualized by TRIMPi method reduces arterial stiffness in early onset type 2 diabetic patients: A randomized controlled trial with aerobic interval training. Int J Cardiol. 2017; 248: 314–319. https://doi.org/10.1016/j.ijcard.2017.06.065
  74. Madden K.M., Lockhart C., Potter T.F., et al. Aerobic training restores arterial baroreflex sensitivity in older adults with type 2 diabetes, hypertension, and hypercholesterolemia. Clin J Sport Med. 2010; 20(4): 312–317. https://doi.org/10.1097/JSM.0b013e3181ea8454
  75. Dos Santos E.S., Asano R.Y., Filho I.G., et al. Acute and chronic cardiovascular response to 16 weeks of combined eccentric or traditional resistance and aerobic training in elderly hypertensive women: a randomized controlled trial. J Strength Cond Res. 2014; 28(11): 3073–3084. https://doi.org/10.1519/JSC.0000000000000537
  76. Alzahrani A.A., Alqahtani A.S., Vennu V., et al. Feasibility and efficacy of low-to-moderate intensity aerobic exercise training in reducing resting blood pressure in sedentary older Saudis with hypertension living in social home care: A pilot randomized controlled trial. Medicina (Kaunas). 2023; 59(6): 1171. https://doi.org/10.3390/medicina59061171
  77. Lamina S. Effects of continuous and interval training programs in the management of hypertension: a randomized controlled trial. J Clin Hypertens (Greenwich). 2010; 12(11): 841–849. https://doi.org/10.1111/j.1751-7176.2010.00315.x
  78. Barcellos F.C., Del Vecchio F.B., Reges A., et al. Exercise in patients with hypertension and chronic kidney disease: a randomized controlled trial. J Hum Hypertens. 2018; 32(6): 397–407. https://doi.org/10.1038/s41371-018-0055-0
  79. Greenwood S.A., Koufaki P., Mercer T.H., et al. Aerobic or resistance training and pulse wave velocity in kidney transplant recipients: a 12-week pilot randomized controlled trial (the Exercise in Renal Transplant [ExeRT] Trial). Am J Kidney Dis. 2015; 66(4): 689–698. https://doi.org/10.1053/j.ajkd.2015.06.016
  80. Keating S.E., Croci I., Wallen M.P., et al. High-intensity interval training is safe, feasible and efficacious in nonalcoholic steatohepatitis: a randomized controlled trial. Dig Dis Sci. 2023; 68(5): 2123–2139. https://doi.org/10.1007/s10620-022-07779-z
  81. Sardeli A.V., Gáspari A.F., Dos Santos W.M., et al. Comprehensive time-course effects of combined training on hypertensive older adults: a randomized control trial. Int J Environ Res Public Health. 2022; 19(17): 11042. https://doi.org/10.3390/ijerph191711042
  82. Heffernan K.S., Yoon E.S., Sharman J.E., et al. Resistance exercise training reduces arterial reservoir pressure in older adults with prehypertension and hypertension. Hypertens Res. 2013; 36(5): 422–427. https://doi.org/10.1038/hr.2012.198
  83. Molmen-Hansen H.E., Stolen T., Tjonna A.E., et al. Aerobic interval training reduces blood pressure and improves myocardial function in hypertensive patients. Eur J Prev Cardiol. 2012; 19(2): 151–160. https://doi.org/10.1177/1741826711400512
  84. Corres P., Martinez-Aguirre-Betolaza A., Fryer S.M., et al. Long-term effects in the EXERDIET-HTA study: supervised exercise training vs. physical activity advice. Res Q Exerc Sport. 2020; 91(2): 209–218. https://doi.org/10.1080/02701367.2019.1656794
  85. Jo E.A., Cho K.I., Park J.J., et al. Effects of high-intensity interval training versus moderate-intensity continuous training on epicardial fat thickness and endothelial function in hypertensive metabolic syndrome. Metab Syndr Relat Disord. 2020; 18(2): 6–102. https://doi.org/10.1089/met.2018.0128
  86. Bertani R.F., Campos G.O., Perseguin D.M., et al. Resistance exercise training is more effective than interval aerobic training in reducing blood pressure during sleep in hypertensive elderly patients. J Strength Cond Res. 2018; 32(7): 2085–2090. https://doi.org/10.1519/JSC.0000000000002354
  87. Jung M.E., Bourne J.E., Beauchamp M.R., et al. High-intensity interval training as an efficacious alternative to moderate-intensity continuous training for adults with prediabetes. J Diabetes Res. 2015; 2015: 191595. https://doi.org/10.1155/2015/191595
  88. Cheema B.S., Davies T.B., Stewart M., et al. The feasibility and effectiveness of high-intensity boxing training versus moderate-intensity brisk walking in adults with abdominal obesity: a pilot study. BMC Sports Sci Med Rehabil. 2015; 7: 3. https://doi.org/10.1186/2052-1847-7-3
  89. Angadi S.S., Mookadam F., Lee C.D., et al. High-intensity interval training vs. moderate-intensity continuous exercise training in heart failure with preserved ejection fraction: a pilot study. J Appl Physiol (1985). 2015; 119(6): 753–758. https://doi.org/10.1152/japplphysiol.00518.2014
  90. Croymans D.M., Krell S.L., Oh C.S., et al. Effects of resistance training on central blood pressure in obese young men. J Hum Hypertens. 2014; 28(3): 157–164. https://doi.org/10.1038/jhh.2013.81
  91. Slivovskaja I., Ryliskyte L., Serpytis P., et al. Aerobic training effect on arterial stiffness in metabolic syndrome. Am J Med. 2018; 131(2): 148–155. https://doi.org/10.1016/j.amjmed.2017.07.038
  92. Park W., Jung W.S., Hong K., Kim Y.Y., Kim S.W., Park H.Y. Effects of Moderate Combined Resistance- and Aerobic-Exercise for 12 Weeks on Body Composition, Cardiometabolic Risk Factors, Blood Pressure, Arterial Stiffness, and Physical Functions, among Obese Older Men: A Pilot Study. Int J Environ Res Public Health. 2020 Oct 3; 17(19): 7233. https://doi.org/10.3390/ijerph17197233
  93. Way K.L., Sabag A., Sultana R.N., et al. The effect of low-volume high-intensity interval training on cardiovascular health outcomes in type 2 diabetes. Int J Cardiol. 2020; 320: 148–154. https://doi.org/10.1016/j.ijcard.2020.06.019
  94. Лопухов О.Е., Михайлова М.Г. Исследование влияния занятий на силовых тренажерах блочного типа и группового функционального тренинга на функциональное состояние лиц с пограничной артериальной гипертензией. Российский журнал спортивной науки: медицина, физиология, тренировка. 2023; 2(4): 22–28. https://doi.org/10.51871/2782-6570_2023_02_04_4 [Lopukhov O.E., Mikhailova M.G. Study of the impact of block-type machine training and functional group training on the functional state of individuals with borderline arterial hypertension. Russian Journal of Sports Science: Medicine, Physiology, Training. 2023; 2(4): 22–28. https://doi.org/10.51871/2782-6570_2023_02_04_4 (In Russ.).]
  95. Мирошников А.Б., Форменов А.Д., Смоленский А.В. Влияние равномерной и высокоинтенсивной интервальной тренировки в кардиореабилитации бодибилдеров с артериальной гипертензией: рандомизированное контролируемое исследование. Вестник восстановительной медицины. 2020; 6(100): 108–113. https://doi.org/10.38025/2078-1962-2020-100-6-108-113 [Miroshnikov A.B., Formenov A.D., Smolensky A.V. The Effects of Moderate and High-Intensity Interval Training in Cardiac Rehabilitation of Bodybuilders with Arterial Hypertension: a Randomized Controlled Trial. Bulletin of Rehabilitation Medicine. 2020; 6(100): 108–113. https://doi.org/10.38025/2078-1962-2020-100-6-108-113 (In Russ.).]
  96. Аронов Д.М., Бубнова М.Г., Красницкий В.Б. и др. Клинические эффекты годичной программы физических тренировок у больных артериальной гипертензией трудоспособного возраста, перенесших острый инфаркт миокарда. Системные гипертензии. 2015; 12(4): 61–68. https://doi.org/10.26442/SG29124 [Aronov D.M., Bubnova M.G., Krasnitsky V.B., et al. Clinical effects of a one-year physical training program in working-age patients with arterial hypertension after acute myocardial infarction. Systemic Hypertension. 2015; 12(4): 61–68. https://doi.org/10.26442/SG29124 (In Russ.).]
  97. Herrod P.J.J., Lund J.N., Phillips B.E. Time-efficient physical activity interventions to reduce blood pressure in older adults: a randomised controlled trial. Age Ageing. 2021; 50(3): 980–984. https://doi.org/10.1093/ageing/afaa211
  98. Burchert H., Lapidaire W., Williamson W., et al. Aerobic exercise training response in preterm-born young adults with elevated blood pressure and stage 1 hypertension: a randomized clinical trial. Am J Respir Crit Care Med. 2023; 207(9): 1227–1236. https://doi.org/10.1164/rccm.202205-0858OC
  99. Venturelli M., Cè E., Limonta E., et al. Effects of endurance, circuit, and relaxing training on cardiovascular risk factors in hypertensive elderly patients. Age (Dordr). 2015; 37(5): 101. https://doi.org/10.1007/s11357-015-9835-4
  100. Hortmann K., Boutouyrie P., Locatelli J.C., et al. Acute effects of high-intensity interval training and moderate-intensity continuous training on arterial stiffness in young obese women. Eur J Prev Cardiol. 2021; 28(7): e7–e10. https://doi.org/10.1177/2047487320909302
  101. Pedralli M.L., Marschner R.A., Kollet D.P., et al. Different exercise training modalities produce similar endothelial function improvements in individuals with prehypertension or hypertension: a randomized clinical trial. Sci Rep. 2020; 10(1): 7628. https://doi.org/10.1038/s41598-020-64365-x
  102. Lamina S., Okoye C.G. Effect of low intensity continuous training programme on serum uric acid in the non pharmacological management of hypertension: a randomized controlled trial. Niger J Med. 2010; 19(1): 77–86. https://doi.org/10.4314/njm.v19i1.52485
  103. Woolstenhulme J.G., Guccione A.A., Herrick J.E., et al. Left ventricular function before and after aerobic exercise training in women with pulmonary arterial hypertension. J Cardiopulm Rehabil Prev. 2019; 39(2): 118–126. https://doi.org/10.1097/HCR.0000000000000397
  104. Oliveira-Dantas F.F., Brasileiro-Santos M.D.S., Thomas S.G., et al. Short-term resistance training improves cardiac autonomic modulation and blood pressure in hypertensive older women: a randomized controlled trial. J Strength Cond Res. 2020; 34(1): 37–45. https://doi.org/10.1519/JSC.0000000000003182
  105. Soltani M., Aghaei Bahmanbeglou N., Ahmadizad S. High-intensity interval training irrespective of its intensity improves markers of blood fluidity in hypertensive patients. Clin Exp Hypertens. 2020; 42(4): 309–314. https://doi.org/10.1080/10641963.2019.1649687
  106. Ramirez-Jimenez M., Morales-Palomo F., Moreno-Cabañas A., et al. Effects of antihypertensive medication and high-intensity interval training in hypertensive metabolic syndrome individuals. Scand J Med Sci Sports. 2021; 31(7): 1411–1419. https://doi.org/10.1111/sms.13949
  107. Kim H.K., Hwang C.L., Yoo J.K., et al. All-extremity exercise training improves arterial stiffness in older adults. Med Sci Sports Exerc. 2017; 49(7): 1404–1411. https://doi.org/10.1249/MSS.0000000000001229
  108. Stutz J., Casutt S., Spengler C.M. Respiratory muscle endurance training improves exercise performance but does not affect resting blood pressure and sleep in healthy active elderly. Eur J Appl Physiol. 2022; 122(12): 2515–2531. https://doi.org/10.1007/s00421-022-05024-z
  109. de Matos D.G., de Almeida-Neto P.F., Moreira O.C., et al. Two Weekly Sessions of High-Intensity Interval Training Improve Metabolic Syndrome and Hypertriglyceridemic Waist Phenotype in Older Adults: A Randomized Controlled Trial. Metab Syndr Relat Disord. 2021; 19(6): 332–339. https://doi.org/10.1089/met.2020.0136
  110. Goldberg M.J., Boutcher S.H., Boutcher Y.N. The effect of 4 weeks of aerobic exercise on vascular and baroreflex function of young men with a family history of hypertension. J Hum Hypertens. 2012; 26(11): 644–649. https://doi.org/10.1038/jhh.2011.95
  111. Toohey K., Pumpa K.L., Arnolda L., et al. A pilot study examining the effects of low-volume high-intensity interval training and continuous low to moderate intensity training on quality of life, functional capacity and cardiovascular risk factors in cancer survivors. PeerJ. 2016; 4: e2613. https://doi.org/10.7717/peerj.2613
  112. Hanssen H., Minghetti A., Magon S., et al. Superior Effects of High-Intensity Interval Training vs. Moderate Continuous Training on Arterial Stiffness in Episodic Migraine: A Randomized Controlled Trial. Front Physiol. 2017; 8: 1086. https://doi.org/10.3389/fphys.2017.01086
  113. Swift D.L., McGee J.E., Grammer E.E., et al. The effect of exercise training level on arterial stiffness after clinically significant weight loss. Clin Obes. 2023; 13(5): e12584. https://doi.org/10.1111/cob.12584
  114. Okamoto T., Masuhara M., Ikuta K. Effects of eccentric and concentric resistance training on arterial stiffness. J Hum Hypertens. 2006; 20(5): 348–354. https://doi.org/10.1038/sj.jhh.1001979
  115. Okamoto T., Masuhara M., Ikuta K. Low-intensity resistance training after high-intensity resistance training can prevent the increase of central arterial stiffness. Int J Sports Med. 2013; 34(5): 385–390. https://doi.org/10.1055/s-0032-1312604
  116. Okamoto T., Hashimoto Y., Kobayashi R. Isometric handgrip training reduces blood pressure and wave reflections in East Asian, non-medicated, middle-aged and older adults: a randomized control trial. Aging Clin Exp Res. 2020; 32(8): 1485–1491. https://doi.org/10.1007/s40520-019-01330-3
  117. Ramírez-Vélez R., Castro-Astudillo K., Correa-Bautista J.E., et al. The Effect of 12 weeks of different exercise training modalities or nutritional guidance on cardiometabolic risk factors, vascular parameters, and physical fitness in overweight adults: cardiometabolic high-intensity interval training-resistance training randomized controlled study. J Strength Cond Res. 2020; 34(8): 2178–2188. https://doi.org/10.1519/JSC.0000000000003533
  118. Ramírez-Vélez R., Hernández-Quiñones P.A., Tordecilla-Sanders A., et al. Effectiveness of HIIT compared to moderate continuous training in improving vascular parameters in inactive adults. Lipids Health Dis. 2019; 18(1): 42. https://doi.org/10.1186/s12944-019-0981-z
  119. Figueroa A., Park S.Y., Seo D.Y., Sanchez-Gonzalez M.A., Baek Y.H. Combined resistance and endurance exercise training improves arterial stiffness, blood pressure, and muscle strength in postmenopausal women. Menopause. 2011; 18(9): 980–984. https://doi.org/10.1097/gme.0b013e3182135442
  120. Palmiere S., Wade M., DeBlois J.P., et al. Aortic stiffness, central pulse pressure and cognitive function following acute resistance exercise. Eur J Appl Physiol. 2018; 118(10): 2203–2211. https://doi.org/10.1007/s00421-018-3948-2
  121. Jeong J., Sprick J.D., DaCosta D.R., et al. Exercise modulates sympathetic and vascular function in chronic kidney disease. JCI Insight. 2023; 8(4): e164221. https://doi.org/10.1172/jci.insight.164221
  122. Tanahashi K., Akazawa N., Miyaki A., et al. Aerobic exercise training decreases plasma asymmetric dimethylarginine concentrations with increase in arterial compliance in postmenopausal women. Am J Hypertens. 2014; 27(3): 415–421. https://doi.org/10.1093/ajh/hpt217
  123. Besnier F., Labrunée M., Richard L., et al. Short-term effects of a 3-week interval training program on heart rate variability in chronic heart failure. A randomised controlled trial. Ann Phys Rehabil Med. 2019; 62(5): 321–328. https://doi.org/10.1016/j.rehab.2019.06.013
  124. Nagel C., Benjamin N., Egenlauf B., Eichstaedt C.A., Fischer C., Palevičiūtė E., Čelutkienė J., Harutyunova S., Mayer E., Nasereddin M., Marra A.M., Grünig E., Guth S. Effect of supervised training therapy on pulmonary arterial compliance and stroke volume in severe pulmonary arterial hypertension and inoperable or persistent chronic thromboembolic pulmonary hypertension. Respiration. 2021; 100(5): 369–378. https://doi.org/10.1159/000512316
  125. Ho S.S., Radavelli-Bagatini S., Dhaliwal S.S., et al. Resistance, aerobic, and combination training on vascular function in overweight and obese adults. J Clin Hypertens (Greenwich). 2012; 14(12): 848–854. https://doi.org/10.1111/j.1751-7176.2012.00700.x
  126. Hu J., Liu M., Yang R., et al. Effects of high-intensity interval training on improving arterial stiffness in Chinese female university students with normal weight obese: a pilot randomized controlled trial. J Transl Med. 2022; 20(1): 60. https://doi.org/10.1186/s12967-022-03250-9
  127. Pascoalino L.N., Ciolac E.G., Tavares A.C., et al. Exercise training improves ambulatory blood pressure but not arterial stiffness in heart transplant recipients. J Heart Lung Transplant. 2015; 34(5): 693–700. https://doi.org/10.1016/j.healun.2014.11.013
  128. Ehlken N., Lichtblau M., Klose H., et al. Exercise training improves peak oxygen consumption and haemodynamics in patients with severe pulmonary arterial hypertension and inoperable chronic thrombo-embolic pulmonary hypertension: a prospective, randomized, controlled trial. Eur Heart J. 2016; 37(1): 35–44. https://doi.org/10.1093/eurheartj/ehv337
  129. Анисимов М.П., Пронин Е.А., Давиденко И.А. и др. Профилактика артериальной гипертензии в гиревом спорте с помощью аэробной работы. Известия Тульского государственного университета. Физическая культура. Спорт. 2023; 12: 63–69. https://doi.org/10.24412/2305-8404-2023-12-63-69 [Anisimov M.P., Pronin E.A., Davidenko I.A., et al. Prevention of arterial hypertension in kettlebell sport using aerobic work. Izvestiya Tula State University. Physical Culture. Sport. 2023; 12: 63–69 (In Russ.).]
  130. Iellamo F., Caminiti G., Sposato B., et al. Effect of High-Intensity interval training versus moderate continuous training on 24-h blood pressure profile and insulin resistance in patients with chronic heart failure. Intern Emerg Med. 2014; 9(5): 547–552. https://doi.org/10.1007/s11739-013-0980-4
  131. Cook J.N., DeVan A.E., Schleifer J.L., et al. Arterial compliance of rowers: implications for combined aerobic and strength training on arterial elasticity. Am J Physiol Heart Circ Physiol. 2006; 290(4): H1596–H1600. https://doi.org/10.1152/ajpheart.01054.2005
  132. Adams S.C., DeLorey D.S., Davenport M.H., et al. Effects of high-intensity aerobic interval training on cardiovascular disease risk in testicular cancer survivors: A phase 2 randomized controlled trial. Cancer. 2017; 123(20): 4057–4065. https://doi.org/10.1002/cncr.30859
  133. Cocks M., Shaw C.S., Shepherd S.O., et al. Sprint interval and moderate-intensity continuous training have equal benefits on aerobic capacity, insulin sensitivity, muscle capillarisation and endothelial eNOS/NAD(P)Hoxidase protein ratio in obese men. J Physiol. 2016; 594(8): 2307–2321. https://doi.org/10.1113/jphysiol.2014.285254
  134. Kobayashi R., Asaki K., Hashiguchi T., Negoro H. The Effect of Aerobic Exercise Training Frequency on Arterial Stiffness in a Hyperglycemic State in Middle-Aged and Elderly Females. Nutrients. 2021; 13(10): 3498. https://doi.org/10.3390/nu13103498
  135. Werner T.J., Pellinger T.K., Rosette V.D., et al. Effects of a 12-Week Resistance Training Program on Arterial Stiffness: A Randomized Controlled Trial. J Strength Cond Res. 2021; 35(12): 3281–3287. https://doi.org/10.1519/JSC.0000000000003331
  136. Kircher E., Ketelhut S., Ketelhut K., et al. A game-based approach to lower blood pressure? comparing acute hemodynamic responses to endurance exercise and exergaming: a randomized crossover trial. Int J Environ Res Public Health. 2022; 19(3): 1349. https://doi.org/10.3390/ijerph19031349
  137. Leal J.M., Del Vecchio F.B. Postexercise hypotension in men with parental history of hypertension: effects of mode and intensity. J Sports Med Phys Fitness. 2022; 62(2): 273–279. https://doi.org/10.23736/S0022-4707.21.12062-6
  138. Ramirez-Jimenez M., Morales-Palomo F., Pallares J.G., et al. Ambulatory blood pressure response to a bout of HIIT in metabolic syndrome patients. Eur J Appl Physiol. 2017; 117(7): 1403–1411. https://doi.org/10.1007/s00421-017-3631-z
  139. Ublosakka-Jones C., Tongdee P., Pachirat O., Jones D.A. Slow loaded breathing training improves blood pressure, lung capacity and arm exercise endurance for older people with treated and stable isolated systolic hypertension. Exp Gerontol. 2018; 108: 48–53. https://doi.org/10.1016/j.exger.2018.03.023
  140. Eriksson K.M., Westborg C.J., Eliasson M.C. A randomized trial of lifestyle intervention in primary healthcare for the modification of cardiovascular risk factors. Scand J Public Health. 2006; 34(5): 453–461. https://doi.org/10.1080/14034940500489826
  141. Burke V., Beilin L.J., Cutt H.E., et al. A lifestyle program for treated hypertensives improved health-related behaviors and cardiovascular risk factors, a randomized controlled trial. J Clin Epidemiol. 2007; 60(2): 133–141. https://doi.org/10.1016/j.jclinepi.2006.05.012
  142. Lambert B.S., Greene N.P., Carradine A.T., et al. Aquatic treadmill training reduces blood pressure reactivity to physical stress. Med Sci Sports Exerc. 2014; 46(4): 809–816. https://doi.org/10.1249/MSS.0000000000000167
  143. de Souza Nery S., Gomides R.S., da Silva G.V., et al. Intra-arterial blood pressure response in hypertensive subjects during low- and high-intensity resistance exercise. Clinics (Sao Paulo). 2010; 65(3): 271–277. https://doi.org/10.1590/S1807-59322010000300006
  144. Seals D.R., Tanaka H., Clevenger C.M., et al. Blood pressure reductions with exercise and sodium restriction in postmenopausal women with elevated systolic pressure: role of arterial stiffness. J Am Coll Cardiol. 2001; 38(2): 506–513. https://doi.org/10.1016/s0735-1097(01)01348-1
  145. Kobayashi R., Kasahara Y., Ikeo T., et al. Effects of different intensities and durations of aerobic exercise training on arterial stiffness. J Phys Ther Sci. 2020; 32(2): 104–109. https://doi.org/10.1589/jpts.32.104
  146. Pagonas N., Vlatsas S., Bauer F., et al. Aerobic versus isometric handgrip exercise in hypertension: a randomized controlled trial. J Hypertens. 2017; 35(11): 2199–2206. https://doi.org/10.1097/HJH.0000000000001445
  147. Masoumi-Ardakani Y., Najafipour H., Nasri H.R., et al. Effect of combined endurance training and MitoQ on cardiac function and serum level of antioxidants, NO, miR-126, and miR-27a in hypertensive individuals. Biomed Res Int. 2022; 2022: 8720661. https://doi.org/10.1155/2022/8720661
  148. Shiotsu Y., Watanabe Y., Tujii S., et al. Effect of exercise order of combined aerobic and resistance training on arterial stiffness in older men. Exp Gerontol. 2018; 111: 27–34. https://doi.org/10.1016/j.exger.2018.06.020
  149. Kleinloog J.P.D., Mensink R.P., Roodt J.O., et al. Aerobic exercise training improves not only brachial artery flow-mediated vasodilatation but also carotid artery reactivity: a randomized controlled, cross-over trial in older men. Physiol Rep. 2022; 10(16): e15395. https://doi.org/10.14814/phy2.15395
  150. Supiano M.A., Lovato L., Ambrosius W.T., et al. Pulse wave velocity and central aortic pressure in systolic blood pressure intervention trial participants. PLoS One. 2018; 13(9): e0203305. https://doi.org/10.1371/journal.pone.0203305
  151. Rodrigues M.L., Carrijo V.H.V., Amaral A.L., et al. Acute effect of interval step exercise versus continuous walk exercise on cardiovascular parameters in hypertensive postmenopausal women: a clinical, controlled, and randomized study. J Bodyw Mov Ther. 2023; 35: 124–129. https://doi.org/10.1016/j.jbmt.2023.04.058
  152. Mc Clean C.M., Mc Laughlin J., Burke G., et al. The effect of acute aerobic exercise on pulse wave velocity and oxidative stress following postprandial hypertriglyceridemia in healthy men. Eur J Appl Physiol. 2007; 100(2): 225–234. https://doi.org/10.1007/s00421-007-0422-y
  153. Naci H., Salcher-Konrad M., Dias S., et al. How does exercise treatment compare with antihypertensive medications? A network meta-analysis of 391 randomised controlled trials assessing exercise and medication effects on systolic blood pressure. Br J Sports Med. 2019; 53(14): 859–869. https://doi.org/10.1136/bjsports-2018-099921
  154. Li L., Liu X., Shen F., et al. Effects of high-intensity interval training versus moderate-intensity continuous training on blood pressure in patients with hypertension: a meta-analysis. Medicine (Baltimore). 2022; 101(50): e32246. https://doi.org/10.1097/MD.0000000000032246
  155. McEvoy J.W., McCarthy C.P., Bruno R.M., et al. 2024 ESC Guidelines for the management of elevated blood pressure and hypertension. Eur Heart J. 2024; 45(38): 3912–4018. https://doi.org/10.1093/eurheartj/ehae178
  156. Cornelissen V.A., Smart N.A. Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc. 2013; 2(1): e004473. https://doi.org/10.1161/JAHA.112.004473
  157. Zhou W.S., Zheng T.T., Mao S.J., et al. Comparing the effects of different exercises on blood pressure and arterial stiffness in postmenopausal women: a systematic review and meta-analysis. Exp Gerontol. 2023; 171: 111990. https://doi.org/10.1016/j.exger.2022.111990
  158. Gries K.J., Raue U., Perkins R.K., et al. Cardiovascular and skeletal muscle health with lifelong exercise. J Appl Physiol (1985). 2018; 125(5): 1636–1645. https://doi.org/10.1152/japplphysiol.00174.2018
  159. Hawkins M.N., Raven P.B., Snell P.G., et al. Maximal oxygen uptake as a parametric measure of cardiorespiratory capacity. Med Sci Sports Exerc. 2007; 39(1): 103–107. https://doi.org/10.1249/01.mss.0000241641.75101.64
  160. Parry H.A., Roberts M.D., Kavazis A.N. Human skeletal muscle mitochondrial adaptations following resistance exercise training. Int J Sports Med. 2020; 41(6): 349–359. https://doi.org/10.1055/a-1121-7851



Creative Commons License
The content is available under the Creative Commons Attribution 4.0 License.

©


This is an open article under the CC BY 4.0 license. Published by the National Medical Research Center for Rehabilitation and Balneology.