Issue 24-4, 2025
Review
Cognitive Rehabilitation in Multiple Sclerosis: Effectiveness and Potential of Virtual Reality Technologies. A review
Igor V. Shirolapov*,
Alexander V. Zakharov,
Natalia P. Romanchuk,
Yuliya S. Komarova,
Mariya S. Sergeeva,
Anna A. Shishkina,
Elena V. Khivintseva,
Irina A. Sharafutdinova
Samara State Medical University, Samara, Russia
ABSTRACT
INTRODUCTION. Innovative technologies in the rehabilitation of multiple sclerosis are aimed at introducing into clinical practice advanced methods and techniques for deep and comprehensive assessment and effective treatment of disorders not only in the motor, but also in the cognitive area. The aim of this review is to summarize and analyze current data on the potential of using virtual reality technologies in cognitive rehabilitation in multiple sclerosis.
AIM. To summarise and analyse current evidence on the potential of using virtual reality technologies in cognitive rehabilitation in multiple sclerosis.
MATERIALS AND METHODS. The search was conducted in PubMed, Scopus, RSCI databases using search queries and keywords in Russian and English: multiple sclerosis, cognitive, virtual reality/VR, immersive technologies, neurorehabilitation from 2014 to 2024.
MAIN CONTENT OF THE REVIEW. Currently, in order to prevent the progression of cognitive deficit, 3D computer simulation technologies are being introduced, which provide realistic user interaction using special electronic equipment, visual and sound effects and multisensory feedback. Virtual reality systems demonstrate effectiveness in the rehabilitation of many diseases, allowing for the correction of impaired functions, stimulation of residual abilities and promotion of global health improvement. The restorative potential of virtual reality (VR) is realized through the complex involvement of the senses and stimulation of neuroplasticity, which develops specific cognitive and behavioral aspects of patient functioning. Increased feedback obtained through exercises performed in a virtual environment allows for the development of awareness of the results of the movements performed and the quality of the movements themselves, which has a positive effect on cognitive activity and motor control. The advantage of using VR technologies, especially with immersive tools, is to create a positive, motivating learning experience for the patient, which requires individual control over several sensorimotor and cognitive domains. CONCLUSION. This review analyzes the current scientific
CONCLUSION. This review analyzes the current scientific information in this area of research, provides a detailed assessment of the current state and potential of VR technologies in cognitive rehabilitation in multiple sclerosis, and discusses the fundamental mechanisms underlying neurorehabilitation using immersive technologies.
KEYWORDS: multiple sclerosis, neurorehabilitation, virtual reality/VR, cognitive activity, motor control, immersive technologies, quality of life
FOR CITATION:
Shirolapov I.V., Zakharov A.V., Romanchuk N.P., Komarova Yu.S., Sergeeva M.S., Shishkina A.A., Khivintseva E.V., Sharafutdinova I.A. Cognitive Rehabilitation in Multiple Sclerosis: Effectiveness and Potential of Virtual Reality Technologies. A review. Bulletin of Rehabilitation Medicine. 2025; 24(4):156–167. https://doi.org/10.38025/2078-1962-2025-24-4-156-167 (In Russ.).
FOR CORRESPONDENCE:
Igor V. Shirolapov, Е-mail: i.v.shirolapov@samsmu.ru
References:
- LaMarca A., Tse I., Keysor J. Rehabilitation Technologies for Chronic Conditions: Will We Sink or Swim? Healthcare (Basel). 2023; 11(20): 2751. https://doi.org/10.3390/healthcare11202751
- Maggio M.G., Cezar R.P., Milardi D., et al. Do patients with neurological disorders benefit from immersive virtual reality? A scoping review on the emerging use of the computer-assisted rehabilitation environment. Eur J Phys Rehabil Med. 2024; 60(1): 37–43. https://doi.org/10.23736/S1973-9087.23.08025-5
- Deutsch J.E., Westcott McCoy S. Virtual Reality and Serious Games in Neurorehabilitation of Children and Adults: Prevention, Plasticity, and Participation. Pediatr Phys Ther. 2017; 29(3): 23–36. https://doi.org/10.1097/PEP.0000000000000387
- Catania V., Rundo F., Panerai S., Ferri R. Virtual Reality for the Rehabilitation of Acquired Cognitive Disorders: A Narrative Review. Bioengineering (Basel). 2023; 11(1): 35. https://doi.org/10.3390/bioengineering11010035
- Calabrò R.S., Naro A., Russo M., et al. The role of virtual reality in improving motor performance as revealed by EEG: A randomized clinical trial. J. Neuroeng. Rehabil. 2017; 14: 53. https://doi.org/10.1186/s12984-017-0268-4
- Zakharov A.V., Bulanov V.A., Khivintseva E.V., et al. Stroke affected lower limbs rehabilitation combining virtual reality with tactile feedback. Frontiers in Robotics and AI. 2020; 7; 81. https://doi.org/10.3389/frobt.2020.00081
- McGinley M.P., Goldschmidt C.H., Rae-Grant A.D. Diagnosis and treatment of multiple sclerosis: A review. JAMA, 2021; 325(8): 765–779. https://doi.org/10.1001/jama.2020.26858
- De Farias F.A.C., Dagostini C.M., Bicca Y.D.A., et al. Remote Patient Monitoring: A Systematic Review. Telemed. J. Health. 2020; 26: 576–583. https://doi.org/10.1089/tmj.2019.0066
- Широлапов И.В., Захаров А.В., Шишкина А.А. и др. Эффективность компьютеризированного когнитивного тренинга для профилактики когнитивных нарушений и стимуляции нейропластичности. Успехи геронтологии. 2024; 37(3): 221–229. https://doi.org/10.34922/AE.2024.37.3.007 [Shirolapov I.V., Zakharov A.V., Shishkina A.A., et al. Efficiency of computerized cognitive training for prevention of cognitive impairments and stimulation of neuroplasticity. Adv Gerontol. 2024; 37(3): 221–229. https://doi.org/10.34922/AE.2024.37.3.007 (In Russ.).]
- Пятин В.Ф., Широлапов И.В. Физическая нагрузка ускорением — расширение реабилитационных возможностей восстановительной медицины. Вестник восстановительной медицины. 2009; 29(1): 25–29. [Pyatin V.F., Shirolapov I.V. Accelerated physical activity — expanding the rehabilitative potential of regenerative medicine. Journal of Restorative Medicine and Rehabilitation. 2009; 29(1): 25–29 (In Russ.).]
- Pyatin V.F., Kolsanov A.V., Shirolapov I.V. Recent Medical Techniques for Peripheral Nerve Repair: Clinico-Physiological Advantages of Artificial Nerve Guidance Conduits. Advances in Gerontology, 2017; 7(2):148–154. https://doi.org/10.1134/S2079057017020126
- Ali S.G., Wang X., Li P., et al. A systematic review: Virtual-reality-based techniques for human exercises and health improvement. Front Public Health. 2023; 11: 1143947. https://doi.org/10.3389/fpubh.2023.1143947
- Базанова О.М., Балиоз Н.В. Ермолаева С.А., и др. Исследование психофизиологических показателей сенсомоторной интеграции при ПТСР. Обоснование выбора мишеней для биоуправления. Физиология человека. 2024; 50(3): 63–80. https://doi.org/10.31857/S0131164624030061 [Bazanova O.М., Balioz N.V., Ermolaeva S.А., et al. Study of psychophysiological indicators of sensorimotor Integration in PTSD. Justification of the choice of targets for biofeedback. Human Physiology. 2024; 50(3): 63–80. https://doi.org/10.31857/S0131164624030061 (In Russ.).]
- Макшаков Г.С., Мазур А.П., Садовских М.О. и др. Реабилитация нарушений ходьбы и баланса при рассеянном склерозе с помощью прогрессивной тренировки мощности с сопротивлением: рандомизированное контролируемое исследование. Вестник восстановительной медицины. 2023; 22(3): 17–18. https://doi.org/10.38025/2078-1962-2023-22-3-17-28 [Makshakov G.S., Mazur A.P., Sadovskikh M.O., et al. Rehabilitation of Gate and Balance Disorders in Multiple Sclerosis using Progressive Resistance Power Training: a Randomized Controlled Study. Bulletin of Rehabilitation Medicine. 2023; 22(3): 17–18. https://doi.org/10.38025/2078-1962-2023-22-3-17-28 (In Russ.).]
- Duan H., Jing Y., Li Y., et al. Rehabilitation treatment of multiple sclerosis. Front Immunol. 2023; 14: 1168821. https://doi.org/10.3389/fimmu.2023.1168821
- Giovannoni G., Butzkueven H., Dhib-Jalbut S., et al. Brain health: Time matters in multiple sclerosis. Mult. Scler. Relat. Disord. 2016; 9: 5–48. https://doi.org/10.1016/j.msard.2016.07.003
- Boschetti A., Maida E., Dini M., et al. A Review on the Feasibility and Efficacy of Home-Based Cognitive Remediation in People with Multiple Sclerosis. J Clin Med. 2024; 13(7): 1916. https://doi.org/10.3390/jcm13071916
- Мельников М.В., Пащенков М.В., Бойко А.Н. Психонейроиммунология и рассеянный склероз. Журнал неврологии и психиатрии им. С.С. Корсакова. 2015; 115(2–2): 8–15. [Melnikov M.V., Pashenkov M.V., Boyko A.N. Psychoneuroimmunology and multiple sclerosis. Zhurnal Nevrologii i Psihiatrii im. S.S. Korsakova. 2015; 115(2–2): 8–15 (In Russ.).]
- Berrigan L.I., Fisk J.D., Tremlett H., et al. Health-related quality of life in multiple sclerosis: direct and indirect effects of comorbidity. Neurology. 2016; 86: 1417–1424. https://doi.org/10.1212/WNL.0000000000002564
- Tacchino A., Podda J., Bergamaschi V., et al. Cognitive rehabilitation in multiple sclerosis: Three digital ingredients to address current and future priorities. Front Hum Neurosci. 2023; 17: 1130231. https://doi.org/10.3389/fnhum.2023.1130231
- Brichetto G., Pedullà L., Podda J., Tacchino A. Beyond center-based testing: Understanding and improving functioning with wearable technology in MS. Mult. Scler. 2019; 25: 1402–1411. https://doi.org/10.1177/1352458519857075
- Frau J., Mulasso A., Coghe G., et al. Multidimensional frailty and its association with quality of life and disability: A cross-sectional study in people with multiple sclerosis. Mult. Scler. Relat. Disord. 2023; 79: 105036. https://doi.org/10.1016/j.msard.2023.105036
- Maggio M.G., De Luca R., Manuli A., et al. Do patients with multiple sclerosis benefit from semi-immersive virtual reality? A randomized clinical trial on cognitive and motor outcomes. Appl. Neuropsychol. Adult. 2022; 29: 59–65. https://doi.org/10.1080/23279095.2019.1708364
- Shirolapov I., Zakharov A., Gochhait S., et al. Aquaporin-4 as the Main Element of the Glymphatic System for Clearance of Abnormal Proteins and Prevention of Neurodegeneration: A Review. WSEAS Transactions on Biology and Biomedicine. 2023; 20: 110–118. https://doi.org/10.37394/23208.2023.20.11
- Широлапов И.В., Захаров А.В., Булгакова С.В. и др. Глимфатическая дисфункция в патогенезе нейродегенеративных заболеваний и патологического старения. Гены и клетки. 2023; 18(4): 309–322. https://doi.org/10.23868/gc546022 [Shirolapov I.V., Zakharov A.V., Bulgakova S.V., et al. Glymphatic dysfunction in the pathogenesis of neurodegenerative diseases and pathological aging. Genes & cells. 2023; 18(4): 309–322. https://doi.org/10.23868/gc546022. (In Russ.).]
- Тренева Е.В., Булгакова С.В., Курмаев Д.П. и др. Адипокины и долгожительство: связи и парадоксы. Экспериментальная и клиническая гастроэнтерология. 2024; 2: 149–155. https://doi.org/10.31146/1682-8658-ecg-222-2-149-155 [Treneva E.V., Bulgakova S.V., Kurmaev D.P., et al. Adipocines and longevity: connections and paradoxes. Experimental and Clinical Gastroenterology. 2024; 2: 149–155. https://doi.org/10.31146/1682-8658-ecg-222-2-149-155 (In Russ.).]
- Широлапов И.В., Маслова О.А., Барашкина К.М., и др. Энтомофагия как альтернативный источник белка и новая пищевая стратегия. Казанский медицинский журнал. 2023; 104(5): 733–740. https://doi.org/10.17816/KMJ123526 [Shirolapov I.V., Maslova O.A., Barashkina K.M., et al. Entomophagy as an alternative source of protein and a new food strategy. Kazan Medical Journal. 2023;104(5):733–740. https://doi.org/10.17816/KMJ123526 (In Russ.).]
- Широлапов И.В., Грибкова О.В., Ковалев А.М. и др. Роль взаимосвязей по оси мозг-кишечник-микробиом в регуляции циркадианных ритмов, механизмах сна и их нарушений. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2024; 124(5–2): 79–86. https://doi.org/10.17116/jnevro202412405279 [Shirolapov I.V., Gribkova O.V., Kovalev A.M., et al. The interactions along the microbiota-gut-brain axis in the regulation of circadian rhythms, sleep mechanisms and disorders. S.S. Korsakov Journal of Neurology and Psychiatry. 2024; 124(5–2): 79–86. https://doi.org/10.17116/jnevro202412405279 (In Russ.).]
- Okholm S. Geroscience: just another name or is there more to it? Biogerontology. 2024; 25(4): 739–743. https://doi.org/10.1007/s10522-024-10105-x
- Широлапов И.В., Захаров А.В., Смирнова Д.А. и др. Роль глимфатического клиренса в механизмах взаимосвязи цикла сон-бодрствование и развития нейродегенеративных процессов. Журнал неврологии и психиатрии им. С.С. Корсакова. 2023; 123(9): 31–36. https://doi.org/10.17116/jnevro202312309131 [Shirolapov I.V., Zakharov A.V., Smirnova D.A., et al. The significance of the glymphatic pathway in the relationship between the sleep-wake cycle and neurodegenerative diseases. S.S. Korsakov Journal of Neurology and Psychiatry. 2023; 123(9): 31–36. https://doi.org/10.17116/jnevro202312309131 (In Russ.).]
- Курмаев Д.П., Булгакова С.В., Тренева Е.В. и др. COVID-19, нейроковид и когнитивные нарушения у пациентов пожилого и старческого возраста (обзор литературы). Успехи геронтологии. 2023; 36(1): 98–108. https://doi.org/10.34922/AE.2023.36.1.013 [Kurmaev D.P., Bulgakova S.V., Treneva E.V., et al. COVID-19, NeuroCOVID-19 and cognitive impairment in elderly and old patients (Literature review). Advances in Gerontology. 2023; 36(1): 98–108. https://doi.org/10.34922/AE.2023.36.1.013 (In Russ.).]
- Пятин В.Ф., Широлапов И.В. Нейромышечная стимуляция в условиях вибрационной физической нагрузки для профилактики остеопороза. Вопросы курортологии, физиотерапии и лечебной физической культуры. 2020; 97(3): 87–93. https://doi.org/10.17116/kurort20209703187 [Pyatin V.F., Shirolapov I.V. Neuromuscular stimulation in conditions of vibrational physical activity for the prevention of osteoporosis. Vopr Kurortol Fizioter Lech Fiz Kult. 2020; 97(3): 87–93. https://doi.org/10.17116/kurort20209703187 (In Russ.).]
- Morris Z.S., Wooding S., Grant J. The Answer Is 17 Years, What Is the Question: Understanding Time Lags in Translational Research. J. R. Soc. Med. 2011; 104: 510–520. https://doi.org/10.1258/jrsm.2011.110180
- Shirolapov I.V., Zakharov A.V., Smirnova D.A. et al. The Role of the Glymphatic Clearance System in the Mechanisms of the Interactions of the Sleep-Waking Cycle and the Development of Neurodegenerative Processes. Neurosci Behav Physi. 2024; 54(2): 199–204. https://doi.org/10.1007/s11055-024-01585-y
- Mihelj M., Novak D., Begus S. Virtual Reality Technology and Applications. 1st ed. Springer. Dordrecht.The Netherlands. 2014. http://dx.doi.org/10.1007/978-94-007-6910-6
- Emmelkamp P.M.G., Meyerbröker K. Virtual Reality Therapy in Mental Health. Annu Rev Clin Psychol. 2021; 17: 495–519. https://doi.org/10.1146/annurev-clinpsy-081219-115923
- Sevcenko K., Lindgren I. The Effects of Virtual Reality Training in Stroke and Parkinson’s Disease Rehabilitation: A Systematic Review and a Perspective on Usability. Eur. Rev. Aging Phys. Act. 2022; 19: 4. https://doi.org/10.1186/s11556-022-00283-3
- Agapov S.N., Bulanov V.A., Zakharov A.V., et al. Comparison of classifiers in the tasks of the single-trial vep classification. Zhurnal Vysshei Nervnoi Deyatelnosti Imeni I.P. Pavlova. 2017; 67(4): 521–526. https://doi.org/10.7868/S004446771704013X
- Kirasirova L.A., Zakharov A.V., Morozova M.V., et al. Erp correlates of emotional face processing in virtual reality. Opera Medica et Physiologica, 2021; 8(3): 12–19. https://doi.org/10.24412/2500-2295-2021-3-12-19
- Rizzolatti G., Fogassi L. The mirror mechanism: recent findings and perspectives. Philos Trans R Soc Lond B Biol Sci. 2014; 369: 20130420. https://doi.org/10.1098/rstb.2013.0420
- Felsberg D., Maher J.P., Rhea C.K. The State of Behavior Change Techniques in Virtual Reality Rehabilitation of Neurologic Populations: A Systematic Review. Front. Psychol. 2019; 10: 979. https://doi.org/10.3389/fpsyg.2019.00979
- Ren Y., Lin C., Zhou Q., et al. Effectiveness of Virtual Reality Games in Improving Physical Function, Balance and Reducing Falls in Balance-Impaired Older Adults: A Systematic Review and Meta-Analysis. Arch. Gerontol. Geriatr. 2023; 108: 104924. https://doi.org/10.1016/j.archger.2023.104924
- Corregidor-Sánchez A.I., Segura-Fragoso A., Rodríguez-Hernández M., et al. Effectiveness of Virtual Reality Technology on Functional Mobility of Older Adults: Systematic Review and Meta-Analysis. Age Ageing. 2021; 50: 370–379. https://doi.org/10.1093/ageing/afaa197
- Elhusein A.M., Fadlalmola H.A., Awadalkareem E.M., et al. Exercise-based gaming in patients with multiple sclerosis: A systematic review and meta-analysis. Belitung Nurs J. 2024; 10(1): 1–14. https://doi.org/10.33546/bnj.3006
- Benedict R.H.B., Amato M.P., DeLuca J., Geurts J.J.G. Cognitive impairment in multiple sclerosis: Clinical management, MRI, and therapeutic avenues. Lancet Neurol. 2020; 19: 860–871. https://doi.org/10.1016/S1474-4422(20)30277-5
- DeLuca G.C., Yates R.L., Beale H., Morrow S.A. Cognitive impairment in multiple sclerosis: Clinical, radiologic and pathologic insights. Brain Pathol. 2015; 25: 79–98. https://doi.org/10.1111/bpa.12220
- Sandroff B.M., DeLuca J. Will Behavioral Treatments for Cognitive Impairment in Multiple Sclerosis Become Standards-of-Care? Int. J. Psychophysiol. 2020; 154: 67–79. https://doi.org/10.1016/j.ijpsycho.2019.02.010
- Schoonheim M.M., Meijer K.A., Geurts J.J. Network collapse and cognitive impairment in multiple sclerosis. Front. Neurol. 2015; 6: 82. https://doi.org/10.3389/fneur.2015.00082
- Nasios G., Bakirtzis C., Messinis L. Cognitive impairment and brain reorganization in MS: Underlying mechanisms and the role of neurorehabilitation. Front. Neurol. 2020; 11: 147. https://doi.org/10.3389/fneur.2020.00147
- Prosperini L., Di Filippo M. Beyond clinical changes: Rehabilitation-induced neuroplasticity in MS. Mult. Scler. J. 2019; 25: 1348–1362. https://doi.org/10.1177/1352458519846096
- Mitolo M., Venneri A., Wilkinson I.D., Sharrack B. Cognitive rehabilitation in multiple sclerosis: A systematic review. J. Neurol. Sci. 2015; 354: 1–9. https://doi.org/10.1016/j.jns.2015.05.004
- Sumowski J.F., Benedict R., Enzinger C., et al. Cognition in multiple sclerosis: State of the field and priorities for the future. Neurology. 2018; 90(6): 278–288. https://doi.org/10.1212/WNL.0000000000004977
- Oreja-Guevara C., Ayuso Blanco T., Brieva Ruiz L., et al. Cognitive Dysfunctions and Assessments in Multiple Sclerosis. Front Neurol. 2019; 10: 581. https://doi.org/10.3389/fneur.2019.00581
- Gharakhanlou R., Wesselmann L., Rademacher A., et al. Exercise training and cognitive performance in persons with multiple sclerosis: A systematic review and multilevel meta-analysis of clinical trials. Mult Scler. 2021;2 7(13): 1977–1993. https://doi.org/10.1177/1352458520917935
- Su Z., Zhang L., Lian X., Guan M. Virtual Reality-Based Exercise Rehabilitation in Cancer-Related Dysfunctions: Scoping Review. J Med Internet Res. 2024; 26: e49312. https://doi.org/10.2196/49312
- Massetti T., da Silva T.D., Crocetta T.B., et al. The Clinical Utility of Virtual Reality in Neurorehabilitation: A Systematic Review. J Cent Nerv Syst Dis. 2018; 10: 1179573518813541. https://doi.org/10.1177/1179573518813541
- Захаров А.В., Хивинцева Е.В., Колсанов А.В., Воронин А.С. Эффективность реабилитации пациентов с рассеянным склерозом в виртуальной реальности. Наука и инновации в медицине. 2019; 4(3): 25–29. https://doi.org/10.35693/2500-1388-2019-4-3-25-29 [Zakharov A.V., Khivintseva E.V., Kolsanov A.V., Voronin A.S. The effectiveness of rehabilitation of patients with multiple sclerosis in virtual reality. Science and Innovations in Medicine. 2019; 4(3): 25–29. https://doi.org/10.35693/2500-1388-2019-4-3-25-29 (In Russ.).]
- Bateni H., Carruthers J., Mohan R., Pishva S. Use of Virtual Reality in Physical Therapy as an Intervention and Diagnostic Tool. Rehabil Res Pract. 2024; 2024: 1122286. https://doi.org/10.1155/2024/1122286
- Zhang Q., Fu Y., Lu Y., et al. Impact of Virtual Reality-Based Therapies on Cognition and Mental Health of Stroke Patients: Systematic Review and Meta-analysis. J Med Internet Res. 2021; 23(11): e31007. https://doi.org/10.2196/31007
- Papaioannou T., Voinescu A., Petrini K., Stanton Fraser D. Efficacy and Moderators of Virtual Reality for Cognitive Training in People with Dementia and Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. J Alzheimers Dis. 2022; 88(4): 1341–1370. https://doi.org/10.3233/JAD-210672
- Kumar J., Patel T., Sugandh F., et al. Innovative Approaches and Therapies to Enhance Neuroplasticity and Promote Recovery in Patients with Neurological Disorders: A Narrative Review. Cureus. 2023; 15(7): e41914. https://doi.org/10.7759/cureus.41914
- Повереннова И.Е., Ткаченко А.С., Захаров А.В. и др. Каротидный стеноз как фактор риска развития ишемического инсульта. Наука и инновации в медицине. 2024; 9(2): 124–130. https://doi.org/10.35693/SIM627523 [Poverennova I.E., Tkachenko A.S., Zakharov A.V., et al. Carotid stenosis as a risk factor for ischemic stroke. Science and Innovations in Medicine. 2024; 9(2): 124–130. https://doi.org/10.35693/SIM627523 (In Russ).]
- Cortés-Pérez I., Sánchez-Alcalá M., Nieto-Escámez F.A., et al. Virtual reality-based therapy improves fatigue, impact, and quality of life in patients with multiple sclerosis. A Systematic Rev Meta-Analysis. Sensors (Basel). 2021; 21: 7389. https://doi.org/10.3390/s21217389
- Munari D., Fonte C., Varalta V., et al. Effects of robot-assisted gait training combined with virtual reality on motor and cognitive functions in patients with multiple sclerosis: A pilot, single-blind, randomized controlled trial. Restor Neurol Neurosci. 2020; 38(2): 151–164. https://doi.org/10.3233/RNN-190974
- Lamargue D., Koubiyr I., Deloire M., et al. Effect of cognitive rehabilitation on neuropsychological and semiecological testing and on daily cognitive functioning in multiple sclerosis: The REACTIV randomized controlled study. J Neurol Sci. 2020; 415: 116929. https://doi.org/10.1016/j.jns.2020.116929
- Ozdogar A.T., Ertekin O., Kahraman T., et al. Effect of video-based exergaming on arm and cognitive function in persons with multiple sclerosis: A randomized controlled trial. Mult Scler Relat Disord. 2020; 40: 101966. https://doi.org/10.1016/j.msard.2020.101966
- Russo M., Dattola V., De Cola M.C., et al. The role of robotic gait training coupled with virtual reality in boosting the rehabilitative outcomes in patients with multiple sclerosis. Int J Rehabil Res. 2018; 41(2): 166–172. https://doi.org/10.1097/MRR.0000000000000270
- Leonardi S., Maggio M.G., Russo M., et al. Cognitive recovery in people with relapsing/remitting multiple sclerosis: A randomized clinical trial on virtual reality-based neurorehabilitation. Clin Neurol Neurosurg. 2021; 208: 106828. https://doi.org/10.1016/j.clineuro.2021.106828
- Pagliari C., Di Tella S., Jonsdottir J., et al. Effects of home-based virtual reality telerehabilitation system in people with multiple sclerosis: A randomized controlled trial. J Telemed Telecare. 2024; 30(2): 344–355. https://doi.org/10.1177/1357633X211054839
- Manuli A., Maggio M.G., Tripoli D., et al. Patients’ perspective and usability of innovation technology in a new rehabilitation pathway: An exploratory study in patients with multiple sclerosis. Mult Scler Relat Disord. 2020; 44: 102312. https://doi.org/10.1016/j.msard.2020.102312
- Maggio M.G., Maresca G., De Luca R., et al. The Growing Use of Virtual Reality in Cognitive Rehabilitation: Fact, Fake or Vision? A Scoping Review. J Natl Med Assoc. 2019; 111(4): 457–463. https://doi.org/10.1016/j.jnma.2019.01.003
- Zhang J., Wu M., Li J., et al. Effects of virtual reality-based rehabilitation on cognitive function and mood in multiple sclerosis: A systematic review and meta-analysis of randomized controlled trials. Mult Scler Relat Disord. 2024; 87: 105643. https://doi.org/10.1016/j.msard.2024.105643
- Kane A., Thompson N.R., Sullivan A.B. Assessment of Computer Assisted Rehabilitation Environment (CAREN) System Use and Mood in Patients with Multiple Sclerosis. Int J MS Care 2022; 24: 63–66. https://doi.org/10.7224/1537-2073.2020-131
- Clemenson G.D., Stark S.M., Rutledge S.M., Stark C.E.L. Enriching hippocampal memory function in older adults through video games. Behav Brain Res. 2020; 390: 112667. https://doi.org/10.1016/j.bbr.2020.112667
- Riva G., Mancuso V., Cavedoni S., Stramba-Badiale C. Virtual reality in neurorehabilitation: a review of its effects on multiple cognitive domains. Expert Rev Med Devices. 2020; 17(10): 1035–1061. https://doi.org/10.1080/17434440.2020.1825939
- Lozano-Quilis J.A., Gil-Gómez H., Gil-Gómez J.A., et al. Virtual rehabilitation for multiple sclerosis using a kinect-based system: randomized controlled trial. JMIR Serious Games. 2014; 2(2): e12. https://doi.org/10.2196/games.2933
- Behrouz Jazi A.H., Rasti J., Etemadifar M. Balance rehabilitation for patients with Multiple Sclerosis using a Kinect®-based virtual training program. J Clin Neurosci. 2023; 116: 104–111. https://doi.org/10.1016/j.jocn.2023.08.026
- Bulanov V.A., Zakharov A.V., Khivintseva E.V. Wavelet transform for the identification of P300. IOP Conference Series: Materials Science and Engineering. 2020; 862(5): 052049. https://doi.org/10.1088/1757-899X/862/5/052049
- Пятин В.Ф., Широлапов И.В., Никитин О.Л. Реабилитационные возможности вибрационной физической нагрузки в геронтологии. Успехи геронтологии. 2009; 22(2): 337–342. [Piatin V.F., Shirolapov I.V., Nikitin O.L. Vibrational physical exercises as the rehabilitation in gerontology. Adv Gerontol. 2009; 22(2): 337–342 (In Russ).]
- Ksiazek-Winiarek D.J., Szpakowski P., Glabinski A. Neural Plasticity in Multiple Sclerosis: The Functional and Molecular Background. Neural Plast. 2015; 2015: 307175. https://doi.org/10.1155/2015/307175
- Modica C.M., Bergsland N., Dwyer M.G., et al. Cognitive reserve moderates the impact of subcortical gray matter atrophy on neuropsychological status in multiple sclerosis. Mult Scler. 2016; 22(1): 36–42. https://doi.org/10.1177/1352458515579443
- Milewska-Jędrzejczak M., Gląbiński A. The Influence of Conventional and Innovative Rehabilitation Methods on Brain Plasticity Induction in Patients with Multiple Sclerosis. J Clin Med. 2023; 12(5): 1880. https://doi.org/10.3390/jcm12051880
- Neupokoeva A., Bratchenko I., Bratchenko L., et al. Raman Liquid Biopsy: A New Approach to The Multiple Sclerosis Diagnostics. Front. Neurol. 2025; 16: 1516712. https://doi.org/10.3389/fneur.2025.1516712

The content is available under the Creative Commons Attribution 4.0 License.
©
This is an open article under the CC BY 4.0 license. Published by the National Medical Research Center for Rehabilitation and Balneology.